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Introduction

Quantum information stands at the confluence of quantum mechanics and information the-

ory, wielding the mathematical elegance of both realms to delve into the profound nature of

information processing at the quantum level. In classical information theory, bits are the funda-

mental units representing 0 and 1. Quantum information theory, however, introduces the concept

of qubits, the quantum counterparts to classical bits. Unlike classical bits, qubits can exist in a

superposition of states, allowing them to be both 0 and 1 simultaneously. This unique property

empowers quantum computers to perform certain calculations exponentially faster than classical

computers.

Entanglement is a crucial phenomenon in quantum theory where two or more particles be-

come closely connected. When particles are entangled, changing the state of one immediately

affects the state of the other, no matter the distance between them. This has important impli-

cations for quantum information and computing, offering new possibilities for unique ways of

handling information.

Quantum algorithms, such as Shor’s algorithm for factoring large numbers and Grover’s

algorithm for quantum search, exemplify the power of quantum information in tackling complex

computational tasks with unparalleled efficiency.

In order to treat information processing in quantum systems, it is necessary to mathemati-

cally formulate fundamental concepts such as quantum systems, states, and measurements, etc.

Useful tools for researching quantum information are functional analysis and matrix theory.

First, we consider the quantum system. It is described by a Hilbert space H, which is called a

representation space. This will be advantageous because it is not only the underlying basis of
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quantum mechanics but is also as helpful in introducing the special notation used for quantum

mechanics. The (pure) physical states of the system correspond to unit vectors of the Hilbert

space. This correspondence is not 1-1. When f1 and f2 are unit vectors, then the correspond-

ing states are identical if f1 = zf2 for a complex number z of modulus 1 . Such z is often

called phase. The pure physical state of the system determines a corresponding state vector up

to a phase. Traditional quantum mechanics distinguishes between pure states and mixed states.

Mixed states are described by density matrices. A density matrix or statistical operator is a pos-

itive matrix of trace 1 on the Hilbert space. This means that the space has a basis consisting of

eigenvectors of the statistical operator and the sum of eigenvalues is 1. In quantum information

theory, distance functions are used to measure the distance between two mixed states. Addition-

ally, these distance functions can be employed to characterize the properties of a given quantum

state. For instance, they can quantify the quantum entanglement between two parts of a state,

representing the shortest distance between the state and the set of all separable states. These

distance functions naturally extend to the set of positive semi-definite matrices, which is also

the main focus of this thesis.

Nowadays, the significance of matrix theory has been widely recognized across various

fields, including engineering, probability and statistics, quantum information, numerical analy-

sis, biological and social sciences. In image processing (subdivision schemes), medical imaging

(MRI), radar signal processing, statistical biology (DNA/genome), and machine learning, data

from numerous experiments are stored as positive definite matrices. To work with each set of

data, we need to select its representative element. In other words, we need to compute the aver-

age of the corresponding positive definite matrices. Therefore, considering global solutions of

the least-squares problems for matrices is of paramount importance (refer to [2, 8, 18, 28, 67, 73]

for examples).

Let 0 < a ≤ x ≤ b. Consider the following least squares problem:

d2(x, a) + d2(x, b) → min, x ∈ [a, b],
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where d := dE(x, y) = |y − x|, or, d := dR(x, y) := | log(y)− log(x)|.

The arithmetic mean (a + b)/2 and the geometric mean
√
ab are unique solutions to the above

problem with respect to dE and dR distance, respectively. Moreover, based on the AM-GM

inequality for two non-negative numbers a and b, we have a new distance as follows

d(a, b) =
a+ b

2
−

√
ab.

For A,B ∈ Pn, some matrix analogs of scalar distances are:

• Euclidean distance induced from Euclidean/Frobenius inner product 〈A,B〉 = Tr(A∗B).

The associated norm is 󰀂A󰀂F = 〈A,A〉1/2 = (Tr(A∗A))1/2.

• The Riemann distance [12] is δR(A,B) = || log(A−1B)||2 =
󰀣

n󰁛

i=1

log2 λi(A
−1B)

󰀤1/2

.

• Bures-Wasserstein distance [13] in the theory of optimal transport :

db(A,B) =
󰀓
Tr(A+B)− 2Tr

󰀓󰀃
A1/2BA1/2

󰀄1/2󰀔󰀔1/2

.

• The Log-Determinant metric [75] in machine learning and quantum information:

dl(A,B) = log det
A+B

2
− 2 log det(AB).

• The Hellinger metric or Bhattacharya metric [73] in quantum information :

dh(A,B) =
󰀃
Tr(A+B)− 2Tr

󰀃
A1/2B1/2

󰀄󰀄1/2
.

In applications, one are sometimes interested in distance-like functions that provide distance
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between two data points. Such functions are not necessarily symmetric; and the triangle inequal-

ity does not need to be true. Divergences [11] are such distance-like functions .

Definition. A smooth function Φ : Pn × Pn → R+ is called a quantum divergence if

(i) Φ(A,B) = 0 if and only if A = B.

(ii) The derivative DΦ with respect to the second variable vanishes on the diagonal, i.e.,

DΦ(A,X)|X=A = 0.

(iii) The second derivative D2Φ is positive on the diagonal, i.e.,

D2Φ(A,X)|X=A(Y, Y ) ≥ 0 for all Hermitian matrix Y.

Some divergences that have recently received a lot of attention are in [11, 14, 35, 56].

Now let us revisit the scalar mean theory which serves as a starting point for our next problem

in this thesis.

A scalar mean of non-negative numbers is a function from R+ × R+to R+such that:

1) M(x, x) = x for every x ∈ R+.

2) M(x, y) = M(y, x) for every x, y ∈ R+.

3) If x < y, then x < M(x, y) < y.

4) If x < x0 and y < y0, then M(x, y) < M (x0, y0).

5) M(x, y) is continuous.

6) M(tx, ty) = tM(x, y) for t, x, y ∈ R+.

A two-variable function M(x, y) satisfying condition 6) can be reduced to a one-variable

function f(x) := M(1, x). Namely, M(x, y) is recovered from f as M(x, y) = xf (x−1y).
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Notice that the function f , corresponding to M is monotone increasing on R+. And this relation

forms a one-to-one correspondence between means and monotone increasing functions on R+.

The following are some desired properties of any object that is called a “mean” M on H+
n .

(A1). Positivity: A,B 󰃍 0 ⇒ M(A,B) 󰃍 0.

(A2). Monotonicity: A 󰃍 A′, B 󰃍 B′ ⇒ M(A,B) 󰃍 M (A′, B′).

(A3). Positive homogeneity: M(kA, kB) = kM(A,B) for k ∈ R+.

(A4). Transformer inequality: X∗M(A,B)X 󰃑 M (X∗AX,X∗BX) for X ∈ B(H).

(A5). Congruence invariance: X∗M(A,B)X = M (X∗AX,X∗BX) for invertible X ∈ B(H).

(A6). Concavity: M (tA+ (1− t)B, tA′ + (1− t)B′) 󰃍 tM (A,A′) + (1 − t)M (B,B′) for

t ∈ [0, 1].

(A7). Continuity from above: if An ↓ A and Bn ↓ B, then M (An, Bn) ↓ M(A,B).

(A8). Betweenness: if A 󰃑 B, then A 󰃑 M(A,B) 󰃑 B.

(A9). Fixed point property: M(A,A) = A.

To study matrix or operator means in general, we must first consider three classical means

in mathematics: arithmetic, geometric, and harmonic means. These means are defined in the

following manner, respectively,

A∇B =
1

2
(A+B),

A󰂒B = A1/2
󰀃
A−1/2BA−1/2

󰀄1/2
A1/2,

and

A!B = 2(A−1 +B−1)−1.

In the above definitions, if matrix A is not invertible, we replace A with A󰂃 = A+󰂃I and then let

󰂃 tend to 0 (similarly for matrix B). It can be seen that the arithmetic, harmonic and geometric
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means share the properties (A1)-(A9) in common. In 1980, Kubo and Ando [54] developed an

axiomatic theory of operator mean on H+
n . At first, they defined a connection of two matrices

as follows (the term “connection” comes from the study of electrical network connections).

Definition. A connection on H+
n is a binary operation σ on H+

n satisfying the following axioms

for all A,A′, B,B′, C ∈ H+
n :

(M1). Monotonicity: A 󰃑 A′, B 󰃑 B′ =⇒ AσB 󰃑 A′σB′.

(M2). Transformer inequality: C(AσB)C 󰃑 (CAC)σ(CBC).

(M3). Joint continuity from above: if An, Bn ∈ B(H)+satisfy An ↓ A and Bn ↓ B, then

AnσBn ↓ AσB.

A mean is a connection with normalization condition

(M4) IσI = I .

To each connection σ corresponds its transpose σ′ defined by Aσ′B = BσA. A connection σ

is symmetric by definition if σ = σ′. The adjoint of σ, denoted by σ∗, is defined by Aσ∗B =

(A−1σB−1)
−1

, for invertible A,B. When σ is a non-zero connection, its dual, in symbol σ⊥, is

defined by σ⊥ = (σ′)∗ = (σ∗)′.

However, Kubo-Ando theory of means still has many limitations. In applied and engineering

fields, people need more classes of means that are non Kubo-Ando. For some non Kubo-Ando

means we refer the interested readers to [17, 23, 25, 35, 37].

One of the famous non-Kubo-Ando means is the spectral geometric mean [37], denoted as

A󰂑B, introduced in 1997 by Fiedler and Pták . It is called the spectral geometric mean because

(A󰂒B)2 is similar to AB and that the eigenvalues of their spectral mean are the positive square

roots of the corresponding eigenvalues of AB. In 2015, Kim and Lee [52] defined the weighted

spectral mean:

A󰂑tB :=
󰀃
A−1󰂒B

󰀄t
A
󰀃
A−1󰂒B

󰀄t
, t ∈ [0, 1].

In this thesis we focus on two problems:
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1. Distance function generated by operator means. We introduce some new distance on

the set of positive definite matrices in the relation to operator means, and their applications.

In addition, we also study some geometric properties for means such as the in-betweenness

property, and data processing inequality in quantum information.

2. A new weighted spectral geometric mean. We introduce a new weighted spectral geo-

metric mean, denoted by Ft(A,B) and study basic properties for this quantity. We also

establish a weak log-majorization relation involving Ft(A,B) and the Lie-Trotter formula

for Ft(A,B).

The main tools in our research are the spectral theorem for Hermitian matrices and the theory

of Kubo-Ando means. Some fundamental techniques in the theory of operator monotone func-

tions and operator convex functions are also utilized in the dissertation. We also employ basic

knowledge in matrix theory involving unitarily invariant norms, trace, etc.

The main results in this thesis are presented in the following articles:

1. Vuong T.D., Vo B.K (2020), “An inequality for quantum fidelity”, Quy Nhon Univ. J. Sci.,

4 (3).

2. Dinh T.H., Le C.T., Vo B.K, Vuong T.D. (2021), “Weighted Hellinger distance and in

betweenness property”, Math. Ine. Appls., 24, 157-165.

3. Dinh T.H., Le C.T., Vo B.K., Vuong T.D. (2021), “The α-z-Bures Wasserstein diver-

gence”, Linear Algebra Appl., 624, 267-280.

4. Dinh T.H., Le C.T., Vuong T.D., α-z-fidelity and α-z-weighted right mean, Submitted.

5. Dinh T.H., Tam T.Y., Vuong T.D, On new weighted spectral geometric mean, Submitted.

They were presented on the seminars at the Department of Mathematics and Statistics at Quy

Nhon University and at the following international workshops and conferences as follows:

1. First SIBAU-NU Workshop on Matrix Analysis and Linear Algebra, 15-17 October, 2021.
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2. 20th Workshop on Optimization and Scientific Computing, April 21-23, 2022 - Ba Vi,

Vietnam.

3. International Workshop on Matrix Analysis and Its Applications, June 4, 2022, Quy Nhon,

Viet Nam.

4. The second international workshop on Matrix Theory and Applications, AKFA University,

November, 2022.

5. International Workshop on Matrix Analysis and Its Applications, July 7-8, 2023, Quy

Nhon, Viet Nam.

6. 10th Viet Nam Mathematical Congress, August 8-12, 2023, Da Nang, Viet Nam.

This thesis has introduction, three chapters, conclusion, further investigation, a list of the

author’s papers related to the thesis and preprints related to the topics of the thesis, and a list of

references.

The introduction provides a background on the topics covered in this work and explains

why they are meaningful and relevant. It also briefly summarizes the content of the thesis and

highlights the main results from the main three chapters.

In the first chapter, the author collects some basic preliminaries which are used in this thesis.

In the second chapter, we introduce the weighted Hellinger distance for matrices which is

an interpolating between the Euclidean distance and the Hellinger distance. In 2019, Minh [43]

introduced the Alpha Procrustes distance as follows: For α > 0, and for positive semi-definite

matrices A and B,

db,α =
1

α
db

󰀃
A2α, B2α

󰀄
.

In this chapter, by employing this approach, we define a new distance called the Weighted

Hellinger distance as follows:

dh,α(A,B) =
1

α
dh

󰀃
A2α, B2α

󰀄

8



and then studied its properties. In the first section of this chapter, we show that the weighted

Hellinger distance, as α tends to zero, is exactly the Log-Euclidean distance (Proposition 2.1.1),

that is for two positive semi-definite matrices A and B,

lim
α→0

d2h,α(A,B) = || log(A)− log(B)||2F .

Afterwards, in Proposition 2.1.2 we demonstrate the equivalence between the weighted Hellinger

distance and the Alpha Procrustes distance, it means

db,α(A,B) ≤ dh,α(A,B) ≤
√
2db,α(A,B).

We say that a matrix mean σ satisfies the in-betweenness property with respect to the metric d if

for any pair of positive definite operators A and B,

d(A,AσB) ≤ d(A,B).

In the second section, we prove that the matrix power mean µp(t, A,B) = (tAp + (1− t)Bp)1/p

satisfies the in-betweenness property in the weighted Hellinger and Alpha Procrustes distances

(Theorem 2.2.1 and Theorem 2.2.2). At the end of this chapter, we prove that if σ is a symmetric

mean and satisfies the in-betweenness property with respect to the Alpha Procrustes distance or

the Weighted Hellinger distance, then it can only be the arithmetic mean (Theorem 2.2.3).

In chapter 3, we study a new quantum divergence so-called the α-z-Bures Wasserstein di-

vergence. In 2015, Audenaert and Datta [7] introduced the Rényi power mean of matrices via

the matrix function Pα,z(A,B) =
󰀓
B

1−α
2z A

α
z B

1−α
2z

󰀔z

. Based on this quantity, in this chapter, the

α-z-Bures Wasserstein divergence for positive semi-definite matrices A and B is defined by

Φ(A,B) = Tr((1− α)A+ αB)− Tr (Qα,z(A,B)) ,

where Qα,z(A,B) =
󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z

. Then we prove that this quantity is a quantum di-

vergence (Theorem 3.1.1) We also solve the least square problem with respect to Φ(A,B) and

9



showed that the solution of this problem is exactly the unique positive definite solution of the

matrix equation
m󰁛

i=1

wiQα,z (X,Ai) = X (Theorem 3.1.2). In [49], M. Jeong and co-authors

investigated this solution and denoted it by Rα,z(ω,A)-called α-z-weighted right mean. In this

thesis, we continue our study of this quantity and obtain some new results. An important result

is an inequality for Rα,z(ω,A), which can be considered a version of the AM-GM inequality

(Theorem 3.1.3). Hwang and Kim [48] proved that for any weighted m-mean Gm between arith-

metic mean and geometric mean, the function Gω
m := Gm(ω, ·) : Pm → P is differentiable at

I = (I, ..., I) with

DGω
n (I)(X1, ..., Xm) =

m󰁛

j=1

wjXj.

Notice that the α-z-weighted right mean does not satisfy the above condition. However, we

do have a similar result for Rω
α,z := Rα,z(ω, ·) (Theorem 3.1.4). The well-known Lie-Trotter

formula [76] states that for X, Y ∈ Mn,

lim
n→+∞

󰀓
exp(

X

n
) exp(

Y

n
)
󰀔n

= exp(X + Y ).

This formula plays an essential role in the development of Lie Theory, and frequently appears

in different research fields [44, 47, 48]. In [48], J.Hwang and S.Kim introduced the multi-

variate Lie-Trotter mean on the convex cone Pn of positive definite matrices. For a positive

probability vector ω = (w1, ..., wm) and differentiable curves γ1, ..., γm on Pn with γi(0) = I

(i = 1, · · · ,m), a weighted m-mean Gm (for m ≥ 2) is the multivariate Lie-Trotter mean if

lim
s→0

Gm(ω, γ1(s), γ2(s), , ..., γm(s))
1/s = exp

󰀓 m󰁛

j=1

wjγ
′
j(0)

󰀔
.

In the end of this section, we prove that Rα,z(ω,A) is a multivariate Lie-Trotter mean (Theorem

3.1.5) . In the second section of this chapter, we show that this divergence satisfies the data

processing inequality (DPI) in quantum information (Theorem 3.2.1). The data processing in-

equality is an information-theoretic concept that states that the information content of a signal

10



cannot be increased via a local physical operation. This can be expressed concisely as “post-

processing cannot increase information”, that is, for any completely positive trace preserving

map E and any positive semi-definite matrices A and B,

Φ(E(A), E(B)) ≤ Φ(A,B).

Furthermore, we show that the matrix power mean µ(t, A,B) = ((1− t)Ap + tBp)1/p satisfies

the in-betweenness property with respect to the α-z-Bures Wasserstein divergence (Theorem

3.2.2). Quantum fidelity is an important quantity in quantum information theory and quantum

chaos theory. It is a distance measure between density matrices, which are considered as quan-

tum states. Although it is not a metric, it has many useful properties that can be used to define a

metric on the space of density matrices. In the next section, we give some properties of quantum

fidelity and its extended version. An important results is we establish some variational principles

for the quantum α-z-fidelity

fα,z(ρ, σ) := Tr
󰀃
ρα/2zσ(1−α)/zρα/2z

󰀄z
= Tr

󰀃
σ(1−α)/2zρα/zσ(1−α)/2z

󰀄z
,

where ρ and σ are two postitive definite matrices (Theorem 3.3.4). That is, it is the extremal

value of two matrix functions

P (X) = zTr
󰀓
σ

z−α
2z ρ

α
z σ

z−α
2z X

󰀔
− (z − 1)Tr

󰀓
σ

z−1
2z Xσ

z−1
2z

󰀔 z
z−1

,

and

Q(X) =
󰀓
Tr(σ

z−α
2z ρ

α
z σ

z−α
2z X)

󰀔z

.
󰀓
Tr(σ

z−1
2z Xσ

z−1
2x )

z
z−1

󰀔1−z

.

Let U(H) be the set of n × n unitary matrices, and Dn the set of density matrices. For

ρ ∈ Dn, its unitary orbit is defined as

Uρ = {UρU∗ : U ∈ U(H)}.

11



In the last section we are going to obtain the maximum and minimum distance between orbits

of two state ρ and σ in Dn via the quantum α-z-fidelity and prove that the set of these distance

is a close interval in R+ (Theorem 2.4.2 and Theorem 3.4.3)

In chapter 4, we introduce a new weighted spectral geometric mean

Ft(A,B) = (A−1󰂒tB)1/2A2−2t(A−1󰂒tB)1/2, t ∈ [0, 1],

where A and B are positive definite matrices. We study basic properties and inequalities for

Ft(A,B). An important property that we obtain in this chapter is that Ft(A,B) satisfies the

Lie-Trotter formula (Theorem 4.2.1).

At the end of this chapter, we compare the weak-log majorization between the F-mean and

the Wasserstein mean, which is the solution to the least square problem with respect to the Bures

distance or Wasserstein distance (Theorem 4.2.3).
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Chapter 1

Preliminaries

1.1 Matrix theory fundamentals

Let N be the set of all natural numbers. For each n ∈ N, we denote by Mn the set of all

n × n complex matrices, Hn is the set of all n × n Hermitian matrices, H+
n is the set of n × n

positive semi-definite matrices, Pn is the cone of positive definite matrices in Mn, and Dn is the

set of density matrices which are the positive definite matrices with trace equal to one. Denote

by I and O the identity and zero elements of Mn, respectively. This thesis deals with problems

for matrices, which are operators in finite-dimensional Hilbert spaces H. We will indicate if the

case is infinite-dimensional.

Recall that for two vectors x = (xj) , y = (yj) ∈ Cn the inner product 〈x, y〉 of x and y

is defined as 〈x, y〉 ≡
󰁛

j

xj ȳj . Now let A be a matrix in Mn, the conjugate transpose or the

adjoint A∗ of A is the complex conjugate of the transpose AT . We have, 〈Ax, y〉 = 〈x,A∗y〉.

Definition 1.1.1. A matrix A = (aij)
n
i,j=1 ∈ Mn is said to be:

(i) diagonal if aij = 0 when i ∕= j.

(ii) invertible if there exists an matrix B of order n × n such that AB = In. In this situation

A has a unique inverse matrix A−1 ∈ Mn such that A−1A = AA−1 = In.

13



(iii) normal if AA∗ = A∗A.

(iv) unitary if AA∗ = A∗A = In.

(v) Hermitian if A = A∗.

(vi) positive semi-definite if 〈Ax, x〉 ≥ 0 for all x ∈ Cn.

(vii) positive definite if 〈Ax, x〉 > 0 for all x ∈ Cn\{0}.

Definition 1.1.2 (Löwner’s Order, [86]). Let A and B be two Hermitian matrices of same order

n. We say that A ≥ B if and only if A− B is a positive semi-definite matrix.

Definition 1.1.3. A complex number λ is said to be an eigenvalue of a matrix A corresponding

to its non-zero eigenvector x if

Ax = λx.

The multiset of the eigenvalues of A is denoted by Sp(A) and called the spectrum of A.

There are several conditions that characterize positive matrices. Some of them are listed in

theorem below [10].

Proposition 1.1.1.

(i) A is positive semi-definite if and only if it is Hermitian and all its eigenvalues are nonneg-

ative. Moreover, A is positive definite if and only if it is Hermitian and all its eigenvalues

are positive.

(ii) A is positive semi-definite if and only if it is Hermitian and all its principal minors are

nonnegative. Moreover, A is positive definite if and only if it is Hermitian and all its

principal minors are positive.

(iii) A is positive semi-definite if and only if A = B∗B for some matrix B. Moreover, A is

positive definite if and only if B is nonsingular.
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(iv) A is positive semi-definite if and only if A = T ∗T for some upper triangular matrix T .

Further, T can be chosen to have nonnegative diagonal entries. If A is positive definite,

then T is unique. This is called the Cholesky decomposition of A. Moreover, A is positive

definite if and only if T is nonsingular.

(v) A is positive semi-definite if and only if A = B2 for some positive matrix B. Such a B

is unique. We write B = A1/2 and call it the (positive) square root of A. Moreover, A is

positive definite if and only if B is positive definite.

(vi) A is positive semi-definite if and only if there exist x1, . . . , xn in H such that

aij = 〈xi, xj〉 .

A is positive definite if and only if the vectors xj, 1 ≤ j ≤ n, are linearly independent.

Let A ∈ Mn, we denote the eigenvalues of A by λj(A), for j = 1, 2, ..., n. For a matrix

A ∈ Mn, the notation λ(A) ≡ (λ1(A),λ2(A), . . . ,λn(A)) means that λ1(A) ≥ λ2(A) ≥ . . . ≥

λn(A). The absolute value of matrix A ∈ Mn is the square root of matrix A∗A and denoted by

|A| = (A∗A)
1
2 .

We call the eigenvalues of |A| by the singular value of A and denote as sj(A), for j = 1, 2, ..., n.

For a matrix A ∈ Mn, the notation s(A) ≡ (s1(A), s2(A), . . . , sn(A)) means that s1(A) ≥

s2(A) ≥ . . . ≥ sn(A).

There are some basic properties of the spectrum of a matrix.

Proposition 1.1.2. Let A,B ∈ Mn, then

(i) Sp(AB) = Sp(BA).

(ii) If A is a Hermitian matrix then Sp(A) ⊂ R.

(iii) A is a positive semi-definite (respectively positive definite) if and only if A is a Hermitian

matrix and Sp(A) ⊂ R≥0 (respectively Sp(A) ⊂ R+).
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(iv) If A,B ≥ 0 then Sp(AB) ⊂ R+.

The trace of a matrix A = (aij) ∈ Mn, denoted by Tr(A), is the sum of all diagonal entries,

or, we often use the sum of all eigenvalues λi(A) of A, i.e.,

Tr(A) =
n󰁛

i=1

aii =
n󰁛

i=1

λi(A)

Related to the trace of the matrix, we recall the Araki-Lieb-Thirring trace inequality [18]

used consistently throughout the thesis.

Theorem 1.1.1. Let A and B be two positive semi-definite matrices, and let q > 0, we have

Tr
󰁫󰀃
B

r
2ArB

r
2

󰀄 q
r

󰁬
≤ Tr

󰁫󰀓
B

1
2AB

1
2

󰀔q󰁬
, if r ∈ (0, 1],

and

Tr
󰁫󰀃
B

r
2ArB

r
2

󰀄 q
r

󰁬
≥ Tr

󰁫󰀓
B

1
2AB

1
2

󰀔q󰁬
, if r ≥ 1.

The determinant of A is denoted and defined by

det(A) =
󰁛

ρ∈Sn

󰀣
sgn(ρ)

n󰁜

i=1

aiρi

󰀤
=

n󰁜

j=1

λj.

where Sn is the set of all permutations ρ of the set S = {1, 2, . . . , n}.

Proposition 1.1.3. Let A,B ∈ Hn with λ(A) = (λ1,λ2, . . . ,λn) and λ(B) = (µ1, µ2, . . . , µn).

Then

(i) If A > 0 and B > 0, then A ≥ B if and only if B−1 ≥ A−1.

(ii) If A ≥ B, then X∗AX ≥ X∗BX for every X ∈ Mn.

(iii) If A ≥ B, then λj ≥ µj for each j = 1, 2, . . . , n.

(iv) If A ≥ B ≥ 0, then Tr(A) ≥ Tr(B) ≥ 0.
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(v) If A ≥ B ≥ 0, then det(A) ≥ det(B) ≥ 0.

A function 󰀂 · 󰀂 : Mn → R is said to be a matrix norm if for all A,B ∈ Mn and ∀α ∈ C we

have:

(i) 󰀂A󰀂 ≥ 0.

(ii) 󰀂A󰀂 = 0 if and only if A = 0.

(iii) 󰀂αA|| = |α| · ||A||.

(iv) 󰀂A+B󰀂 ≤ 󰀂A󰀂+ 󰀂B󰀂.

In addition, a matrix norm is said to be sub-multiplicative matrix norm if

󰀂AB󰀂 ≤ 󰀂A󰀂 · 󰀂B󰀂.

A matrix norm is said to be a unitarily invariant norm if for every A ∈ Mn, we have

󰀂UAV 󰀂 = 󰀂A󰀂 for all U, V ∈ Un unitary matrices. It is denoted as 󰀂| · |󰀂.

These are some important norms over Mn.

The operator norm of A, defined by

󰀂|A|󰀂op =
󰁳

λ1 (A∗A) = s1(A).

The Ky Fan k-norm is the sum of all singular values, i.e.,

󰀂A󰀂k =
k󰁛

i=1

si(A).

The Schatten p-norm is defined as

󰀂A󰀂p =
󰀣

n󰁛

i=1

spi (A)

󰀤1/p

.
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When p = 2, we have the Frobenius norm or sometimes called the Hilbert-Schmidt norm :

󰀂A󰀂2 =
󰀃
Tr |A|2

󰀄1/2
=

󰀣
n󰁛

j=1

s2j(A)

󰀤1/2

.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be in Rn. Let x↓ =
󰀃
x[1] , x[2], . . . , x[n]

󰀄

denote a rearrangement of the components of x such that x[1] 󰃍 x[2] 󰃍 . . . 󰃍 x[n]. We say that x

is majorized by y, denoted by x ≺ y, if

k󰁛

i=1

x[i] 󰃑
k󰁛

i=1

y[i], k = 1, 2, . . . , n− 1, and
n󰁛

i=1

x[i] =
n󰁛

i=1

y[i].

We say that x is weakly majorized by y if
k󰁛

i=1

x[i] 󰃑
k󰁛

i=1

y[i], k = 1, 2, . . . , n, denoted by x ≺w y.

If x > 0 (i.e., xi > 0 for i = 1, . . . , n) and y > 0, we say that x is log-majorized by y, denoted

by x ≺log y, if

k󰁜

i=1

x[i] 󰃑
k󰁜

i=1

y[i], k = 1, 2, . . . , n− 1, and
n󰁜

i=1

x[i] =
n󰁜

i=1

y[i].

In other words, x ≺log y if and only if log x ≺ log y.

Matrix P ∈ Mn is called a projection if P 2 = P . One says that P is a Hermitian projection

if it is both Hermitian and a projection; P is an orthogonal projection if the range of P is

orthogonal to its null space. The partial ordering is very simple for projections. If P and Q are

projections, then the relation P ≤ Q means that the range of P is included in the range of Q.

An equivalent algebraic formulation is PQ = P . The largest projection in Mn is the identity I

and the smallest one is 0 . Therefore 0 ≤ P ≤ I for any projection P ∈ Mn. Assume that P

and Q are projections on the same Hilbert space. Among the projections which are smaller than

P and Q there is a maximal projection, denoted by P ∧ Q, which is the orthogonal projection

onto the intersection of the ranges of P and Q.
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Theorem 1.1.2. [45] Assume that P and Q are orthogonal projections. Then

P ∧Q = lim
n→∞

(PQP )n = lim
n→∞

(QPQ)n.

1.2 Matrix function and matrix mean

Now let us recall the spectral theorem which is one of the most important tools in functional

analysis and matrix theory.

Theorem 1.2.1 (Spectral decomposition, [9]). Let λ1 > λ2 . . . > λk be eigenvalues of a Hermi-

tian matrix A. Then

A =
k󰁛

j=1

λjPj,

where Pj is the orthogonal projection onto the subspace spanned by the eigenvectors associated

to the eigenvalue λj .

For a real-valued function f defined on some interval K ⊂ R, and for a self-adjoint matrix

A ∈ Mn with spectrum in K, the matrix f(A) is defined by means of the functional calculus,

i.e.,

A =
k󰁛

j=1

λjPj =⇒ f(A) :=
k󰁛

j=1

f (λj)Pj.

Or, if A = U diag (λ1, . . . ,λn)U
∗ is a spectral decomposition of A (where U is some unitary),

then

f(A) := U diag (f (λ1) , · · · , f (λn))U
∗.

We are now at the stage where we will discuss matrix/operator functions. Löwner was the

first to study operator monotone functions in his seminal papers [63] in 1930. In the same time,

Kraus investigated the notion operator convex function [55].

Definition 1.2.1 ([63]). A continuous function f defined on an interval K(K ⊂ R) is said to be

operator monotone of order n on K if for two Hermitian matrices A and B in Mn with spectras
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in K, one has

A ≤ B implies f(A) ≤ f(B).

If f is operator monotone of any orders then f is called operator monotone.

Theorem 1.2.2 (Löwner-Heinz’s Inequality, [86]). The function f(t) = tr is operator monotone

on [0,∞) for 0 ≤ r ≤ 1. More specifically, for two positive semi-definite matrices such that

A ≤ B. Then

Ar ≤ Br, 0 ≤ r ≤ 1.

Definition 1.2.2 ([55]). A continuous function f defined on an interval K(K ⊂ R) is said to be

operator convex of order n on K if for any Hermitian matrices A and B in Mn with spectra in

K, and for all real numbers 0 ≤ λ ≤ 1,

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B).

If f is operator convex of any order n then f is called operator convex. If −f is operator convex

then we call f is operator concave.

Theorem 1.2.3 ([10]). Function f(t) = tr in [0,∞) is operator convex when r ∈ [−1, 0]∪ [1, 2].

More specifically, for any positive semi-definite matrices A,B and for any λ ∈ [0, 1],

(λA+ (1− λ)B)r ≤ λAr + (1− λ)Br.

Another important example is the function f(t) = log t, which is operator monotone on

(0,∞) and the function g(t) = t log t is operator convex. The relations between operator mono-

tone and operator convex via the theorem below.

Theorem 1.2.4 ([9]). Let f be a (continuous) real function on the interval [0,α). Then the

following two conditions are equivalent:

(i) f is operator convex and f(0) ≤ 0.
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(ii) The function g(t) =
f(t)

t
is operator monotone on (0,α).

Definition 1.2.3 ([10]). Let f(A,B) be a real valued function of two matrix variables. Then, f

is called jointly concave, if for all 0 ≤ α ≤ 1,

f(αA1 + (1− α)A2,αB1 + (1− α)B2) ≥ αf(A1, B1) + (1− α)f(A2, B2)

for all A1, A2, B1, B2. If −f is jointly concave, we say f is jointly convex.

We will review very quickly some basic concepts of the Fréchet differential calculus, with

special emphasis on matrix analysis. Let X, Y be real Banach spaces, and let L(X, Y ) be the

space of bounded linear operators from X to Y . Let U be an open subset of X . A continuous

map f from U to Y is said to be differentiable at a point u of U if there exists T ∈ L(X, Y )

such that

lim
v→0

󰀂f(u+ v)− f(u)− Tv󰀂
󰀂v󰀂 = 0.

It is clear that if such a T exists, it is unique. If f is differentiable at u, the operator T above

is called the derivative of f at u. We will use for it the notation Df(u), of ∂f(u). This is

sometimes called the Fréchet derivative. If f is differentiable at every point of U , we say that it

is differentiable on U . One can see that, if f is differentiable at u, then for every v ∈ X ,

Df(u)(v) =
d

dt

󰀏󰀏󰀏󰀏
t=0

f(u+ tv).

This is also called the directional derivative of f at u in the direction v.

If f1, f2 are two differentiable maps, then f1 + f2 is differentiable and

D (f1 + f2) (u) = Df1(u) +Df2(u).

The composite of two differentiable maps f and g is differentiable and we have the chain rule

D(g ◦ f)(u) = Dg(f(u)) ·Df(u).
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One important rule of differentiation for real functions is the product rule: (fg)′ = f ′g + gf ′.

If f and g are two maps with values in a Banach space, their product is not defined - unless

the range is an algebra as well. Still, a general product rule can be established. Let f, g be two

differentiable maps from X into Y1, Y2, respectively. Let B be a continuous bilinear map from

Y1 × Y2 into Z. Let ϕ be the map from X to Z defined as ϕ(x) = B(f(x), g(x)). Then for all

u, v in X

Dϕ(u)(v) = B(Df(u)(v), g(u)) +B(f(u), Dg(u)(v)).

This is the product rule for differentiation. A special case of this arises when Y1 = Y2 = L(Y ),

the algebra of bounded operators in a Banach space Y . Now ϕ(x) = f(x)g(x) is the usual

product of two operators. The product rule then is

Dϕ(u)(v) = [Df(u)(v)] · g(u) + f(u) · [Dg(u)(v)]

Higher order Fréchet derivatives can be identified with multilinear maps. Let f be a differen-

tiable map from X to Y . At each point u, the derivative Df(u) is an element of the Banach

space L(X, Y ). Thus we have a map Df from X into L(X, Y ), defined as Df : u → Df(u).

If this map is differentiable at a point u, we say that f is twice differentiable at u. The derivative

of the map Df at the point u is called the second derivative of f at u. It is denoted as D2f(u).

This is an element of the space L(X,L(X, Y )). Let L2(X, Y ) be the space of bounded bilinear

maps from X ×X into Y . The elements of this space are maps f from X ×X into Y that are

linear in both variables, and for whom there exists a constant c such that

󰀂f (x1, x2)󰀂 ≤ c 󰀂x1󰀂 󰀂x2󰀂

for all x1, x2 ∈ X . The infimum of all such c is called 󰀂f󰀂. This is a norm on the space

L2(X, Y ), and the space is a Banach space with this norm. If ϕ is an element of L(X,L(X, Y )),

let

ϕ̃ (x1, x2) = [ϕ (x1)] (x2) for x1, x2 ∈ X.
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Then ϕ̃ ∈ L2(X, Y ). It is easy to see that the mapϕ → ϕ̃ is an isometric isomorphism. Thus

the second derivative of a twice differentiable map f from X to Y can be thought of as a bilinear

map from X ×X to Y . It is easy to see that this map is symmetric in the two variables; i.e.,

D2f(u) (v1, v2) = D2f(u) (v2, v1)

for all u, v1, v2. Derivatives of higher order can be defined by repeating the above procedure.

The p th derivative of a map f from X to Y can be identified with a p-linear map from the space

X ×X × · · ·×X ( p copies) into Y . A convenient method of calculating the p th derivative of

f is provided by the formula

Dpf(u) (v1, . . . , vp) =
∂p

∂t1 · · · ∂tp

󰀏󰀏󰀏󰀏
t1=···=tp=0

f (u+ t1v1 + · · ·+ tpvp) .

For the convenience of readers, let us provide some examples for the derivatives of matrices.

Example 1.2.1. In these examples X = Y = L(H).

(i) Let f(A) = A2. Then

Df(A)(B) = AB +BA,

and
󰀅
D2f(A)

󰀆
(B1, B2) = B1B2 +B2B1.

(ii) Let f(A) = A−1 for each invertible A. Then

Df(A)(B) = −A−1BA−1,

and
󰀅
D2f(A)

󰀆
(B1, B2) = A−1B1A

−1B2A
−1 + A−1B2A

−1B1A
−1.
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(iii) Let f(A) = A−2 for each invertible A. Then

Df(A)(B) = −A−1BA−2 − A−2BA−1,

and 󰀅
D2f(A)

󰀆
(B1, B2) =A−2B1A

−1B2A
−1 + A−2B2A

−1B1A
−1

+ A−1B1A
−2B2A

−1 + A−1B2A
−2B1A

−1

+ A−1B1A
−1B2A

−2 + A−1B2A
−1B1A

−2

(iv) Let f(A) = A∗A. Then

Df(A)(B) = A∗B +B∗A,

and

D2f(A) (B1, B2) = B∗
1B2 +B∗

2B1.

In connections with electrical engineering, Anderson and Duffin [3] defined the parallel sum

of two positive definite matrices A and B by

A : B =
󰀃
A−1 +B−1

󰀄−1
.

The harmonic mean is 2(A : B) which is the dual of the arithmetic mean A∇B =
A+B

2
. In

this period time, Pusz and Woronowicz [69] introduced the geometric mean as

A󰂒B := A1/2
󰀃
A−1/2BA−1/2

󰀄1/2
A1/2.

They also proved that the geometric mean is the unique positive solution of the Riccati equation

XA−1X = B.

In 2005, Moakher [65] conducted a study, and then in 2006, Bhatia and Holbrook [14] investi-
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gated the structure of the Riemannian manifold H+
n . They showed that the curve

γ(t) = A󰂒tB = A1/2
󰀃
A−1/2BA−1/2

󰀄t
A1/2 (t ∈ [0, 1])

is the unique geodesic joining A and B, and called t-geometric mean or weighted geometric

mean. The weighted harmonic and the weighted arithmetic means are defined by

A!tB =
󰀃
tA−1 + (1− t)B−1

󰀄−1
,

and

A∇tB = tA+ (1− t)B.

The well-known inequality related to these quantities is the harmonic, geometric, and arithmetic

means inequality [47, 60] , that is,

A!tB ≤ A󰂒tB ≤ A∇tB.

These three means are Kubo-Ando means. Let’s collect the main content of the Kubo-Ando

means theory in the general case [54]. For x > 0 and t ≥ 0, the function φ(x, t) =
x(1 + t)

x+ t
is bounded and continuous on the extended half-line [0,∞]. The Löwner theory ([9, 45]) on

operator-monotone functions states that the map m 󰀁→ f , defined by

f(x) =

󰁝

[0,∞]

φ(x, t)dm(t) for x > 0,

establishes an affine isomorphism from the class of positive Radon measures on [0,∞] onto the

class of operator-monotone functions. In the representation abvove, f(0) = inf
x
f(x) = m({0})

and inf
x
f(x)/x = m({∞}).

Theorem 1.2.5. [Kubo-Ando] For each operator connection σ, there exists a unique operator
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monotone function f : R+ → R+, satisfying

f(t)In = Inσ(tIn), t > 0,

and for A,B > 0 the formula

AσB = A
1
2f(A− 1

2BA− 1
2 )A

1
2

holds, with the right hand side defined via functional calculus, and extended to A,B ≥ 0 as

follows

AσB = lim
󰂃→0

(A+ 󰂃In)σ(B + 󰂃In).

We call f the representing function of σ.

The next theorem follows from the integral representation of matrix monotone functions and

from the previous theorem.

Theorem 1.2.6. The map, m 󰀁→ σ, defined by

AσB = aA+ bB +

󰁝

(0,∞)

1 + t

t
{(tA) : B}dm(t)

where

a = m({0}) and b = m({∞}),

establishes an affine isomorphism from the class of positive Radon measures on [0,∞] onto the

class of connections.

If P and Q are two projections, then the explicit formulation for PσQ is simpler.

Theorem 1.2.7. If σ is a mean, then for every pair of projections P and Q

PσQ = a(P − P ∧Q) + b(Q− P ∧Q) + P ∧Q,
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where

a = 1σ0 and b = lim
x→∞

(1σx)/x.

An immediate consequence of the above theorem is the following relation for projections P

and Q

P !Q = P ∧Q and P#Q = P ∧Q.

Let f be the representing function of σ. Since xf(x−1) is the representing function of the

transpose σ′, then σ is symmetric if and only if f(x) = xf (x−1) . The next theorem gives the

representation for a symmetric connection.

Theorem 1.2.8. The map, n 󰀁→ σ, defined by

AσB =
c

2
(A+B) +

󰁝

(0,1]

1 + t

2t
{(tA) : B + A : (tB)}dn(t)

where c = n({0}), establishes an affine isomorphism from the class of positive Radon measures

on the unit interval [0, 1] onto the class of symmetric connections.
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Chapter 2

Weighted Hellinger distance

In recent years, many researchers have paid attention to different distance functions on the

set Pn of positive definite matrices. Along with the traditional Riemannian metric dR(A,B) =󰀣
n󰁛

i=1

log2 λi(A
−1B)

󰀤1/2

(where λi(A
−1B) are eigenvalues of the matrix A−1/2BA−1/2), there

are other important functions. Two of them are the Bures-Wasserstein distance [13], which are

adapted from the theory of optimal transport :

db(A,B) =
󰀃
Tr(A+B)− 2Tr((A1/2BA1/2)1/2)

󰀄1/2
,

and the Hellinger metric or Bhattacharya metric [11] in quantum information :

dh(A,B) =
󰀃
Tr(A+B)− 2Tr(A1/2B1/2)

󰀄1/2
.

Notice that the metric dh is the same as the Euclidean distance between A1/2 and B1/2, i.e.,

󰀂A1/2 − B1/2󰀂F .

Recently, Minh [43] introduced the Alpha Procrustes distance as follows: For α > 0 and for

two positive semi-definite matrices A and B,

db,α =
1

α
db(A

2α, B2α).
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He showed that the Alpha Procrustes distances are the Riemannian distances corresponding to

a family of Riemannian metrics on the manifold of positive definite matrices, which encom-

pass both the Log-Euclidean and Wasserstein Riemannian metrics. Since the Alpha Procrustes

distances are defined based on the Bures-Wasserstein distance, we also call them the weighted

Bures-Wasserstein distances. In that flow, in this chapter we can define the weighted Hellinger

metric for two positive semi-definite matrices as follows:

dh,α(A,B) =
1

α
dh(A

2α, B2α),

then investigate its properties within this framework.

The results of this chapter are taken from [32].

2.1 Weighted Hellinger distance

Definition 2.1.1. For two positive semi-definite matrices A and B and for α > 0, the weighted

Hellinger distance between A and B is defined as

dh,α(A,B) =
1

α
dh(A

2α, B2α) =
1

α
(Tr(A2α +B2α)− 2Tr(AαBα))

1
2 . (2.1.1)

It turns out that dh,α(A,B) is an interpolating metric between the Log-Euclidean and the

Hellinger metrics. We start by showing that the limit of the weighted Hellinger distance as α

tends to 0 is the Log-Euclidean distance. We also show that the weighted Bures-Wasserstein and

weighted Hellinger distances are equivalent (Proposition 2.1.2).

Proposition 2.1.1. For two positive semi-definite matrices A and B,

lim
α→0

d2h,α(A,B) = || log(A)− log(B)||2F .

Proof. We rewrite the expression of dh,α(A,B) as
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d2h,α(A,B) =
1

α2
d2h(A

2αB2α)

=
1

α2

󰁫
Tr

󰀓
A2α +B2α − 2AαBα

󰀔󰁬

=
||Aα − I||2F

α2
+

||Bα − I||2F
α2

− 2

α2
Tr

󰀓
AαBα − Aα − Bα + I

󰀔
.

We have

lim
α→0

||Aα − I||2F
α2

= || logA||2F , lim
α→0

||Bα − I||2F
α2

= || logB||2F .

Since

Aα = exp (α logA) = I + α logA+
α2

2!
(logA)2 + · · · ,

Bα = exp (α logB) = I + α logB +
α2

2!
(logB)2 + · · · ,

we have

AαBα = I + α(logA+ logB) +
α2

2

󰀓
(logA)2 + (logB)2 + 2 logA. logB

󰀔
+ · · · .

Therefore,

AαBα − Aα − Bα + I = α2 logA · logB + · · · .

Consequently,

d2h,α(A,B) =
||Aα − I||2F

α2
+

||Bα − I||2F
α2

− 2Tr(logA. logB)

=
||Aα − I||2F

α2
+

||Bα − I||2F
α2

− 2
󰁇
logA, logB

󰁈

F
.

Tending α to zero, we obtain

d2h,α(A,B) = || logA||2F + || logB||2B − 2
󰁇
logA, logB

󰁈

F
= || logA− logB||2F .
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This completes the proof.

It is interesting to note that the weighted Bures-Wasserstein and weighted Hellinger distances

are equivalent.

Proposition 2.1.2. For two positive semi-definite matrices A and B,

db,α(A,B) ≤ dh,α(A,B) ≤
√
2db,α(A,B).

Proof. According the Araki-Lieb-Thirring inequality [43] , we have

Tr(A1/2BA1/2)r ≥ Tr(ArBr), |r| ≤ 1.

Replace A with A2α, B with B2α and r with
1

2
we obtain the following

Tr(AαB2αAα)1/2 ≥ Tr(AαBα).

Thus,

1

α2
Tr

󰀓
A2α +B2α − 2(AαB2αAα)1/2

󰀔
≤ 1

α2
Tr

󰀓
A2α +B2α − 2AαBα

󰀔
.

In other words,

db,α(A,B) ≤ dh,α(A,B).

With ρ, σ ∈ Dn, we have

d2h(ρ, σ) = 2− 2 Tr(ρ1/2σ1/2) ≤ 4− 4 Tr((ρ1/2σρ1/2)1/2) = 2d2b(ρ, σ),

or,

2Tr((ρ1/2σρ1/2)1/2) ≤ 1 + Tr(ρ1/2σ1/2).

In the above inequality replace ρ with
A2α

Tr(A2α)
and σ with

B2α

Tr(B2α)
we have
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2Tr
󰁫
(AαB2αAα)1/2

󰁬
≤ Tr(A2α)1/2 Tr(B2α)1/2 + Tr(AαBα)

≤ 1

2
Tr(A2α +B2α) + Tr(AαBα).

It follows that

4Tr[(AαB2αAα)1/2] ≤ Tr(A2α +B2α) + 2Tr(AαBα).

The above inequality is equivalent to

2[Tr(A2α +B2α − 2Tr(AαB2αAα)1/2] ≥ Tr(A2α +B2α − 2AαBα),

or,

d2h,α(A,B) ≤ 2d2b,α(A,B).

Consequently,

dh,α(A,B) ≤
√
2db,α(A,B).

2.2 In-betweenness property

In 2016, Audenaert [5] introduced the in-betweenness property of matrix means . We say

that a matrix mean σ satisfies the in-betweenness property with respect to the metric d if for any

pair of positive definite operators A and B,

d(A,AσB) ≤ d(A,B).

In [34], the authors introduced and studied the in-sphere property of matrix means. Dinh, Franco

and Dumitru also published several papers [26, 28] on geometric properties of the matrix power
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mean µp(t;A,B) := (tAp+(1− t)Bp)1/p with respect to different distance functions. They also

considered the case of the matrix power mean in the sense of Kubo-Ando [54] which is defined

as

Pp(t, A,B) = A1/2
󰀃
tI + (1− t)(A−1/2BA−1/2)p

󰀄1/p
A1/2.

In this section, we focus our study on the in-betweenness properties of the matrix power

means with respect to the weighted Bures-Wasserstein and weighted Hellinger distances. As a

consequence of the equivalence, using the operator convexity and concavity of the power func-

tions, we show that the matrix power mean satisfies the in-betweenness property with respect

to dh,α (Theorem 2.2.1) and db,α (Theorem 2.2.2). We also show that among symmetric means,

the arithmetic mean is the only one that satisfies the in-betweenness property in the weighted

Bures-Wasserstein and weighted Hellinger distances.

Now we are ready to show that the matrix power means µp(t;A,B) satisfy the in-betweenness

property in dh,α and db,α.

Theorem 2.2.1. Let 0 < p/2 ≤ α ≤ p and 0 ≤ t ≤ 1. Then

dh,α(A, µp(t;A,B)) ≤ dh,α(A,B),

for all A,B ∈ H+
n .

Proof. We have

d2h,α(A, µp(t;A,B)) =
1

α2
Tr

󰀓
A2α + µ2α

p − 2Aαµα
p (t;A,B)

󰀔
,

and

d2h,α(A,B) =
1

α2
Tr

󰀓
A2α +B2α − 2AαBα

󰀔
.

Therefore, the above result follows if

Tr
󰀓
µ2α
p (t;A,B)− 2Aαµα

p (t;A,B)
󰀔
≤ Tr

󰀓
B2α − 2AαBα

󰀔
.
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By the operator convexity of the map x 󰀁→ x2α/p, when
p

2
≤ α ≤ p,

µ2α
p (t;A,B) =

󰀓
tAp + (1− t)Bp

󰀔2α/p

≤ tA2α + (1− t)B2α.

Thus, the desired result follows if

Tr
󰁫
t
󰀓
A2α − B2α

󰀔
− 2Aαµα

p (t;A,B)
󰁬
≤ −2Tr(AαBα).

By the operator concavity of the map x 󰀁→ xα/p, when
p

2
≤ α ≤ p,

µα
p (t;A,B) =

󰀓
tAp + (1− t)Bp

󰀔α/p

≥ tAα + (1− t)Bα.

Therefore, the distance monotonicity follows if

Tr
󰁫
t(A2α − B2α)− 2Aα

󰀓
tAα + (1− t)Bα

󰀔󰁬
≤ −2Tr(AαBα),

or

tTr
󰀓
A2α +B2α − 2AαBα

󰀔
≥ 0,

which is from AM-GM inequality.

Theorem 2.2.2. Let 0 < p/2 ≤ α ≤ p and 1/2 ≤ t ≤ 1. Then,

db,α(A, µp(t;A,B)) ≤ db,α(A,B),

for all A,B ∈ H+
n .

Proof. Firstly, we show that for any positive semi-definite matrices A and B, for p/2 ≤ α ≤ p

and 1/2 ≤ t ≤ 1,

db,α(A, µp(t;A,B)) ≤ dh,α(A, µp(t;A,B)) ≤
√
1− tdh,α(A,B).
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By the Araki-Lieb-Thirring inequality, we have

Tr
󰀓
AαB2αAα

󰀔1/2

≥ Tr
󰀓
AαBα

󰀔
.

Therefore,

d2b,α(A, µp(t;A,B)) =
1

α2
db(A

2α, µ2α
p (t;A,B))

=
1

α2
Tr

󰀓
A2α + µ2α

p (t;A,B)− 2(Aαµ2α
p (t;A,B)Aα)1/2

󰀔

≤ 1

α2
Tr

󰀓
A2α + µ2α

p (t;A,B)− 2Aαµα
p (t;A,B)

󰀔
.

By the operator convexity of the function x 󰀁→ x2α/p and the operator concavity of the function

x 󰀁→ xα/p, we obtain

d2b,α(A, µp(t;A,B)) ≤ 1

α2
Tr

󰁫
A2α + tA2α + (1− t)B2α − 2Aα

󰀓
tAα + (1− t)Bα

󰀔󰁬

=
1− t

α2
Tr

󰀓
A2α +B2α − 2AαBα

󰀔

= (1− t)d2h,α(A,B).

From here, applying the square root function to both sides with t ∈ [1
2
, 1], we have

db,α(A, µp(t;A,B)) ≤
√
1− tdh,α(A,B) ≤ 1√

2
dh,α(A,B) ≤ db,α(A,B).

This completes the proof.

In [28, Theorem 2] the authors proved that the matrix Kubo-Ando power mean Pp(t, A,B)

satisfies the in-betweenness property which follows from the fact that the function g(t) =

Tr(A1/2Pp(t;A,B)1/2) is concave. Note that Pt(A,B) ∕= Pt(B,A), i.e., Pt is not symmetric.

However, for the symmetric means we may have the following result whose proof is adapted

from [22].

Theorem 2.2.3. Let σ be a symmetric mean and assume that one of the following inequalities
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holds for any pair of positive definite matrices A and B:

dh,α(A,AσB) ≤ dh,α(A,B) (2.2.2)

or

db,α(A,AσB) ≤ db,α(A,B). (2.2.3)

Then σ is the arithmetic mean.

Proof. By Theorem 1.2.6 and 1.2.8, the symmetric operator mean σ is represented as follows:

AσB =
δ

2
(A+B) +

󰁝

(0,∞)

λ+ 1

λ
{(λA) : B + A : (λB)}dµ(λ), (2.2.4)

where A,B ≥ 0, λ ≥ 0 and µ is a positive measure on (0,∞) with δ + µ((0,∞)) = 1, and the

parallel sum A : B is given by A : B = (A−1 +B−1)−1, where A and B are invertible.

For two orthogonal projections P,Q acting on a Hilbert space H , let us denote by P ∧ Q

their infimum which is the orthogonal projection on the subspace P (H)∩Q(H). If P ∧Q = 0,

then by Theorem 1.2.7,

(λP ) : Q = P : (λQ) =
λ

λ+ 1
P ∧Q.

Consequently, from (2.2.4) we get

PσQ =
δ

2
(P +Q).

Let us consider the following orthogonal projections

P =

󰀳

󰁃 1 0

0 0

󰀴

󰁄 , Qθ =

󰀳

󰁃 cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

󰀴

󰁄 .

Notice that Qθ → P as θ → 0 and Qθ ∧P = 0. From the projections above, it is easy to see that
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the inequality (2.2.2) becomes

dh,α(P, δ(P +Qθ)/2) ≤ dh,α(P,Qθ).

Since this is true for all θ > 0, we can take a limit as θ → 0+ to obtain

dh,α(P, δP ) ≤ dh,α(P, P )

whose equality occurs if and only if δ = 1. This shows that µ = 0 and σ is the arithmetic mean.

The statement for dh,α can be proved similarly.

In this chapter, we introduce a new distance called the weighted Hellinger distance and

investigate its properties. This distance is constructed based on Minh’s approach when he con-

structed the weighted Bures distance. The weighted Bures distance is an extended version with

one parameter of the Bures distance. In the next chapter, we introduce a new quantum diver-

gence called the α-z-Bures Wasserstein divergence, which is considered as an extension with

two parameters of the Bures distance.
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Chapter 3

The α-z-Bures Wasserstein divergence

It is well-known that in the Riemannian manifold of positive definite matrices, the weighted

geometric mean A󰂒tB = A1/2(A−1/2BA−1/2)tA1/2 is the unique geodesic joining A and B,

where A,B ∈ Pn. For t = 1/2, A󰂒1/2B is called the geometric mean of A and B. It is obvious

that A󰂒1/2B is a matrix generalization of the geometric mean
√
ab of positive numbers a and b.

Let A1, A2, · · · , Am be positive definite matrices. In 2004, Moakher [65] and then Bhatia and

Holbrook [14] studied the following least squares problem

min
X>0

m󰁛

i=1

δ22(X,Ai), (3.0.1)

where δ2(A,B) = || log(A−1B)||2 is the Riemannian distance between A and B. They showed

that (3.0.1) has a unique solution which is called the Karcher mean of A1, A2, · · · , Am. In

literature, this mean has different names such as: Fréchet mean, Cartan mean, Riemannian

center of mass. It turns out that the solution of (3.0.1) is the unique positive definite solution of

the Karcher equation
m󰁛

i=1

log(X1/2AiX
1/2) = 0. (3.0.2)
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In [60], Lim and Palfia showed that the solution of (3.0.2) is nothing but the limit of the solution

of the following matrix equation as t → 0,

X =
m󰁛

i=1

1

m
X󰂒tAi. (3.0.3)

Recently, Franco and Dumitru [38] introduced the so-called Rényi power means of matrices.

More precisely, for 0 < αi ≤ zi ≤ 1 and for positive definite matrices Ai, Bi, using the approach

in [60] developed by Lim and Pálfia, they showed that the following equation

X =
m󰁛

i=1

ωiPαi,zi(X,Ai) (3.0.4)

had a unique positive definite solution, where (ωi) is a probability vector (it means, ωi ≥ 0

and ω1 + ω2 + ... + ωm = 1) and Pα,z(A,B) = (B
1−α
2z A

α
z B

1−α
2z )z-the matrix function in the

α-z-Rényi relative entropy introduced by Audenaert and Datta [7] in 2015. Notice that if we

replace Pαi,zi(X,Ai) in (3.0.4) with the weighted geometric mean X󰂒tAi, the solution of the

corresponding matrix equation is the weighted power mean.

Now, notice that if we change the distance function in (3.0.1), the solution may be different,

if exists. Interestingly, in applications people sometimes are interested in distance-like functions

that provide distance between two data points. Such functions are not necessarily symmetric;

and the triangle inequality does not need to be true. Divergences are such distance-like functions.

An important example of divergences is the Bures-Wasserstein metric studied by Bhatia and

coauthors [13] as follows:

db(A,B) = (Tr((A+B)/2)− Tr(A1/2BA1/2)1/2)1/2,

where Tr((A1/2BA1/2)1/2) is the quantum fidelity of two positive definite matrices A and B.

They showed that d2b is a quantum divergence and solved the least squares problem with respect

to the Bures-Wasserstein divergence. In another paper [14], these authors introduced so called
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the weighted Bures-Wasserstein distance as

db,t(A,B) = (Tr((1− t)A+ tB)− Tr(Ft(A,B))1/2,

where Ft(A,B) = Tr(A
1−t
2t BA

1−t
2t )t is the sandwiched quasi-relative entropy [59, 79]. They

also solved the least squares problem with respect to this divergence. Mention that (A1/2BA1/2)1/2

and (A
1−t
2t BA

1−t
2t )t are matrix generalizations of the geometric mean

√
ab and the weighted ge-

ometric mean a1−tbt of positive numbers a and b, respectively.

Motivated by works mentioned above, in the first section of this chapter, we introduce and

study different properties of the α-z-Bures Wasserstein divergence defined as

Φ(A,B) = Tr((1− α)A+ αB)− Tr(Qα,z(A,B)), (3.0.5)

whenever A and B are positive definite matrices, and Qα,z(A,B) = Pα,z(B,A). Note that

Qα,z(A,B) is also a parameterized matrix version of the weighted geometric mean a1−αbα.

In the next section, we show that Φ(A,B) is a quantum divergence. Using the well-known

Brouwer fixed point theorem, we prove that the averaging element of m positive semi-definite

matrices A1, A2, · · · , Am is the unique positive definite solution of the following matrix equation

m󰁛

i=1

wiQα,z(X,Ai) = X,

which is called the α-z-weighted right mean. We also establish some properties for this quantity.

In section 3, we show that the α-z-Bures Wasserstein divergence satisfies the data pro-

cessing inequality in quantum information. Finally, we show that the matrix power mean

µ(t, A,B) = ((1−t)Ap+tBp)1/p satisfies the in-betweenness property in the α-z-Bures Wasser-

stein divergence. On the in-betweenness property we refer the readers to [5, 26, 28, 39, 34].

In 1976 [78], A. Uhlmann introduced the concept of fidelity which is one of the most im-

portant concepts in quantum information. Besides the distance functions like Bures distance,

Hellinger distance or relative entropy etc., people also use quantum fidelity to measure the dis-
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tance between two quantum states. In addition, quantum fidelity can be used to characterize the

property of a given quantum state, for instance, to quantify the quantum entanglement between

two parts of a state, which is the shortest distance between the state and the set of all separable

states. In the next section, in relation to quantum fidelity, we provide a refinement for Fuchs-van

de Graaf inequality [80, 84] and a inequality for the parameterized version of quantum fidelity.

Recall that the quantity we use to define the α-z-Bures Wasserstein divergence was first in-

troduced in 2015 by Audenaert and Datta [7]. They referred to it as α-z-fidelity and denoted

by

fα,z(ρ, σ) := Tr
󰀃
ρα/2zσ(1−α)/zρα/2z

󰀄z
= Tr

󰀃
σ(1−α)/2zρα/zσ(1−α)/2z

󰀄z
. (3.0.6)

This is the matrix function in the α-z-Rényi relative entropy which is a generalization of sand-

wiched Rényi relative entropy [66] and Rényi relative entropy [70]. In the past few years, many

mathematicians and theoretical physicists paid a lot of attention to it [7, 20, 50, 83]. The above

quantity is considered an extension involving two parameters of quantum fidelity. We show that

(Theorem 3.3.4) for 0 < α < z < 1, the quantum α-z-fidelity fα,z(ρ, σ) is the minimum of the

following functions

P (X) = zTr
󰀓
σ

z−α
2z ρ

α
z σ

z−α
2z X

󰀔
− (z − 1)Tr

󰀓
σ

z−1
2z Xσ

z−1
2z

󰀔 z
z−1

and

Q(X) =
󰀓
Tr(σ

z−α
2z ρ

α
z σ

z−α
2z X)

󰀔z

.
󰀓
Tr(σ

z−1
2z Xσ

z−1
2x )

z
z−1

󰀔1−z

.

In the fourth section, we use quantum α-z-fidelity to measure the distance between two quantum

orbits and show that the set of all distances forms a closed interval in R+. (Theorems 3.4.2 and

3.4.3).

The results of this chapter are taken from [30, 31, 32, 77].
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3.1 The α-z-Bures Wasserstein divergence and the least squares

problem

The first main result of this section is that we show the α-z-Bures Wasserstein divergence,

defined in (3.0.5), is a quantum divergence.

Recall that for 0 < p < 1, and let µ be the measure on (0,∞) defined by

dµ(λ) =
sin pπ

π
λp−1dλ,

then for x > 0, we have

xp =
sin pπ

π

󰁝 ∞

0

x

λ+ x
λp−1dλ.

The next lemma follows from the Spectral Theorem and the above representation.

Lemma 3.1.1 ([9]). Let 0 < p < 1 and A be a positive definite matrix. Then,

Ap =

󰁝 ∞

0

A(λ+ A)−1dµ(λ) =

󰁝 ∞

0

󰀓
I − λ(λ+ A)−1

󰀔
dµ(λ), (3.1.7)

where dµ(λ) =
sin(pπ)

π
λp−1dλ.

The following integrals are elementary. So, we omit the proofs.

Lemma 3.1.2. Let y > 0, and 0 < p < 1. Then we have

1

π

󰁝 ∞

0

δ1/2

(δ + y2)2
dδ =

y−1

2
and

sin pπ

π

󰁝 ∞

0

λpdλ

(λ+ y)2
= pyp−1.

Theorem 3.1.1. Let 0 ≤ α ≤ z ≤ 1. Then the quantity

Φ(X, Y ) = Tr((1− α)X + αY )− Tr(Qα,z(X, Y )) (X, Y > 0)

is a divergence.
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Proof. For z = α, the theorem was obtained in [14]. The case 0 ≤ α ≤ z = 1 was proved in a

recent paper by Nguyen and Le in [56]. We need to consider the case 0 < α < z < 1.

Let f(X, Y ) = Tr((1 − α)X + αY ) and g(X, Y ) = Tr(Qα,z(X, Y )). Since z/α > 1, we

have

Tr((X
1−α
2z Y

α
z X

1−α
2z )z) = Tr((X

1−α
2z Y

α
z X

1−α
2z )

z
α
α)

≤ Tr((X
1−α
2α Y X

1−α
2α )α) (the Araki-Lieb-Thirring inequality)

≤ Tr((1− α)X + αY ) ([14, Theorem 11]).

The equality occurs if and only if X = Y . So, Φ(X, Y ) satisfies the first property in definition

of quantum divergence.

Next, we need to verify that DΦ(A,X)|X=A = 0. We have

∂f(X, Y )

∂Y
(B) = Tr(αB). (3.1.8)

Since 0 < z < 1, we have

∂Y z

∂Y
(B) =

󰁝 ∞

0

δz(δ + Y )−1B(δ + Y )−1 sin(zπ)

π
dδ. (3.1.9)

If we put ϕ(X, Y ) = X
1−α
2z Y

α
z X

1−α
2z , then according to (3.1.9) and the Chain Rule,

∂ϕz

∂Y
(B) =

󰁝 ∞

0

δz(δ + ϕ)−1 ∂ϕ

∂Y
(B)(δ + ϕ)−1 sin(zπ)

π
dδ.
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Therefore,

∂g(X, Y )

∂Y
(B) = Tr

󰁫 󰁝 ∞

0

δz(δ + ϕ)−1 ∂ϕ

∂Y
(B)(δ + ϕ)−1 sin(zπ)

π
dδ
󰁬

= Tr
󰁫 󰁝 ∞

0

δz

(δ + ϕ)2
sin(zπ)

π
dδ

󰀕
∂ϕ

∂Y
(B)

󰀖󰁬

= Tr
󰁫
zϕz−1 ∂ϕ

∂Y
(B)

󰁬
(By Lemma3.3.2)

= Tr
󰁫
z
󰀓
X

1−α
2z Y

α
z X

1−α
2z

󰀔z−1 ∂ϕ

∂Y
(B)

󰁬
.

On the other hand,

∂ϕ

∂Y
(B) = X

1−α
2z

∂Y
α
z

∂Y
(B)X

1−α
2z

= X
1−α
2z

󰀕󰁝 ∞

0

λ
α
z (λ+ Y )−1B(λ+ Y )−1 sin(

α
z
π)

π
dλ

󰀖
X

1−α
2z .

When Y = X ,

∂g(X, Y )

∂Y
(B)

󰀏󰀏󰀏󰀏
Y=X

= Tr

󰀕
zY

z−1
z Y

1−α
2z

󰀕󰁝 ∞

0

λ
α
z (λ+ Y )−1B(λ+ Y )−1 sin(

α
z
π)

π
dλ

󰀖
Y

1−α
2z

󰀖

= Tr

󰀕
zY

z−α
z

󰁝 ∞

0

λ
α
z (λ+ Y )−1B(λ+ Y )−1 sin(

α
z
π)

π
dλ

󰀖

= Tr

󰀕
zY

z−α
z

󰁝 ∞

0

λ
α
z

(λ+ Y )2
sin(α

z
π)

π
dλB

󰀖

= Tr
󰀓
zY

z−α
z

α

z
Y

α
z
−1B

󰀔
(by Lemma 3.3.2)

= Tr(αB).

Therefore, on account of (3.1.8) from the last identity we have

∂Φ(X, Y )

∂Y
(B)

󰀏󰀏󰀏󰀏
Y=X

=
∂f(X, Y )

∂Y
(B)

󰀏󰀏󰀏󰀏
Y=X

− ∂g(X, Y )

∂Y
(B)

󰀏󰀏󰀏󰀏
Y=X

= 0.

Property (ii) in definition of quantum divergence is fulfilled.
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Finally, we check that for every Hermitian matrix B,

∂2Φ(X, Y )

∂Y 2

󰀏󰀏󰀏󰀏
Y=X

(B,B) ≥ 0. (3.1.10)

Since ∂2f
∂Y 2 (B1, B2) = 0, we only need to consider the second derivative of g(X, Y ) in Y . Let us

recall
∂g(X, Y )

∂Y
(B) = Tr

󰁫 󰁝 ∞

0

δz(δ + ϕ)−1 ∂ϕ

∂Y
(B)(δ + ϕ)−1 sin(zπ)

π
dδ
󰁬
.

By the product rule, we have

∂2g

∂Y 2
(B1, B2) = −sin(zπ)

π

󰁝 ∞

0

δz Tr
󰁫
(δ + ϕ)−1 ∂ϕ

∂Y
(B2)(δ + ϕ)−1 ∂ϕ

∂Y
(B1)(δ + ϕ)−1

󰁬
dδ

+
sin(zπ)

π

󰁝 ∞

0

δz Tr
󰁫
(δ + ϕ)−1 ∂

2ϕ

∂Y 2
(B1, B2)(δ + ϕ)−1

󰁬
dδ

− sin(zπ)

π

󰁝 ∞

0

δz Tr
󰁫
(δ + ϕ)−1 ∂ϕ

∂Y
(B1)(δ + ϕ)−1 ∂ϕ

∂Y
(B2)(δ + ϕ)−1

󰁬
dδ.

Put

I1 =
sin(zπ)

π

󰁝 ∞

0

δz Tr
󰁫
(δ + ϕ)−1 ∂ϕ

∂Y
(B2)(δ + ϕ)−1 ∂ϕ

∂Y
(B1)(δ + ϕ)−1

󰁬
dδ,

I3 =
sin(zπ)

π

󰁝 ∞

0

δz Tr
󰁫
(δ + ϕ)−1 ∂ϕ

∂Y
(B1)(δ + ϕ)−1 ∂ϕ

∂Y
(B2)(δ + ϕ)−1

󰁬
dδ,

and

I2 =
sin(zπ)

π

󰁝 ∞

0

δz Tr
󰁫
(δ + ϕ)−1 ∂

2ϕ

∂Y 2
(B1, B2)(δ + ϕ)−1

󰁬
dδ.

When Y = X and B1 = B2 = B, we have

I1 = I3 =
sin(zπ)

π

󰁝 ∞

0

δz Tr
󰁫
(δ + Y

1
z )−1 ∂ϕ

∂Y
(B)(δ + Y

1
z )−1 ∂ϕ

∂Y
(B)(δ + Y

1
z )−1

󰁬
dδ.
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Since (δ + Y
1
z )−1 ≥ 0, it is obvious that

(δ + Y
1
z )−1 ∂ϕ

∂Y
(B)(δ + Y

1
z )−1 ∂ϕ

∂Y
(B)(δ + Y

1
z )−1 ≥ 0.

Consequently, the integrals I1 and I3 are nonnegative. If we show that the integral I2 is nonpos-

itive, then (3.1.10) is true. Indeed,

∂2ϕ

∂Y 2
(B1, B2) = −

sin(α
z
π)

π

󰀣
X

1−α
2z

󰁝 ∞

0

󰀣
λ

α
z (λ+ Y )−1B2(λ+ Y )−1B1(λ+ Y )−1

+ λ
α
z (λ+ Y )−1B1(λ+ Y )−1B2(λ+ Y )−1

󰀤
dλ

󰀤
X

1−α
2z .

When Y = X and B1 = B2 = B, we have

∂2ϕ

∂Y 2

󰀏󰀏󰀏󰀏
Y=X

(B,B) = −
2 sin(α

z
π)

π
Tr

󰀕
Y

1−α
z

󰁝 ∞

0

λ
α
z (λ+ Y )−1B(λ+ Y )−1B(λ+ Y )−1dλ

󰀖
.

(3.1.11)

Since (λ+ Y )−1 ≥ 0, we have

(λ+ Y )−1B(λ+ Y )−1B(λ+ Y )−1 ≥ 0.

Consequently, the integral (3.1.11) is nonpositive. Therefore, I2 ≤ 0 and

∂2Φ(X, Y )

∂Y 2
(B,B)

󰀏󰀏󰀏󰀏
Y=X

= − ∂2g(X, Y )

∂Y 2
(B,B)

󰀏󰀏󰀏󰀏
Y=X

≥ 0.

Thus, Φ(A,B) is a quantum divergence on Pn.

Now, let us consider the least squares problem with respect to the new quantum divergence.

Let A1, A2, · · · , Am be positive definite matrices and ω = (ω1,ω2, · · · ,ωm) be a probability
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vector. Consider the least squares problem as shown below:

min
X>0

m󰁛

i=1

ωiΦ(X,Ai). (3.1.12)

This problem was solved by Bhatia, Lim and Jain in [14] when z = α.

Theorem 3.1.2. For 0 ≤ α ≤ z ≤ 1, the function

F (X) =
m󰁛

i=1

ωiΦ(Ai, X)

attains minimum at X0, where X0 is the unique positive definite solution of the following matrix

equation
m󰁛

i=1

wiQα,z(X,Ai) = X. (3.1.13)

Proof. We have
∂Φ(Ai, X)

∂X
(B) = Tr

󰀓
αB − zϕz−1 ∂ϕ

∂X
(B)

󰀔
,

where ϕ = ϕ(Ai, X) = A
1−α
2z

i X
α
z A

1−α
2z

i . Consequently,

∂F (X)

∂X
(B) = Tr

󰁫
αB −

m󰁛

i=1

wizϕ
z−1 ∂ϕ

∂X
(B)

󰁬

= Tr
󰁫
αB −

m󰁛

i=1

wizA
1−α
2z

i ϕz−1A
1−α
2z

i

󰁝 ∞

0

(λ+X)−1B(λ+X)−1λ
α
z sin(α

z
π)

π
dλ

󰁬

= Tr
󰁫
αB − B

󰁝 ∞

0

(λ+X)−1C(λ+X)−1λ
α
z sin(α

z
π)

π
dλ

󰁬

= Tr
󰁫
B
󰀓
αI −

󰁝 ∞

0

(λ+X)−1C(λ+X)−1λ
α
z sin(α

z
π)

π
dλ

󰀔󰁬
,

where C =
m󰁓
i=1

wizA
1−α
2z

i ϕz−1A
1−α
2z

i . Therefore, the only critical point of F (X) is the solution of

the equation

αI =

󰁝 ∞

0

(λ+X)−1C(λ+X)−1λ
α
z sin(α

z
π)

π
dλ. (3.1.14)

Now, let us choose an orthonormal basis in which the matrix X is diagonal, i.e., X = diag(x1, x2, · · · , xn)

47



and let C = (cij) be the representation of C in this basis. From the equation (3.1.14) we have

αδij =

󰁝 ∞

0

cij
(λ+ xi)(λ+ xj)

λ
α
z sin(α

z
π)

π
dλ.

From here, it implies that C is diagonal, and,

α

cii
=

󰁝 ∞

0

λ
α
z

(λ+ xi)2
sin(α

z
π)

π
dλ =

α

z
x

α
z
−1

i .

Therefore,

C =
m󰁛

i=1

wizA
1−α
2z

i ϕz−1A
1−α
2z

i = zX1−α
z .

Multiplying both sides of the last identity from the left and from the right by X
α
2z , we get

X =
m󰁛

i=1

wiX
α
2zA

1−α
2z

i

󰀓
A

1−α
2z

i X
α
z A

1−α
2z

i

󰀔z−1

A
1−α
2z

i X
α
2z

=
m󰁛

i=1

wiX
α
2zA

1−α
2z

i

󰀓
A

α−1
2z

i X−α
z A

α−1
2z

i

󰀔1−z

A
1−α
2z

i X
α
2z

=
m󰁛

i=1

wiX
α
2z

󰀓
A

1−α
z

i 󰂒1−zX
−α

z

󰀔
X

α
2z

=
m󰁛

i=1

wi

󰀓
X

α
2zA

1−α
z

i X
α
2z 󰂒1−zI

󰀔

=
m󰁛

i=1

wi

󰀓
X

α
2zA

1−α
z

i X
α
2z

󰀔z

.

Thus, X satisfies the equation (3.1.13).

Finally, we show that the equation (3.1.13) has a unique solution. Firstly, notice that the

function F (X) is strictly convex [14]. Therefore, if the equation (3.1.13) has a solution, then it

is unique. So, if we show that the function F (X) has a fixed point, we finish the proof. Indeed,

let a and b be positive numbers such that aI ≤ Ai ≤ bI , for all 1 ≤ i ≤ m. We have

X
α
2zA

1−α
z

i X
α
2z ≥ X

α
2z a

1−α
z X

α
2z ≥ a

1
z I.
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By the operator monotone of the map x 󰀁→ xz, when z ∈ [0, 1] we have

󰀓
X

α
2zA

1−α
z

i X
α
2z

󰀔z

≥ aI.

Similarly,
󰀓
X

α
2zA

1−α
z

i X
α
2z

󰀔z

≤ bI . Therefore,

aI ≤ F (X) =
m󰁛

i=1

ωi

󰀓
X

α
2zA

1−α
z

i X
α
2z

󰀔z

≤ bI.

In other words, F (X) is a self-map on the compact and convex K, where

K = {X ∈ P : aI ≤ X ≤ bI}.

According to Brouwer’s fixed point theorem, F (X) has a fixed point.

In [49], Jeong et al denoted this solution as Rα,z(ω;A) and referred to it as the α-z-weighted

right mean. They have identified several favorable properties for this quantity. For the conve-

nience of the readers, let’s recall some notations.

Let ∆m be the set of all positive probability vectors in Rm convexly spanned by the unit

coordinate vectors. Let A = (A1, . . . , Am) ∈ Pm
n ,ω = (w1, . . . , wm) ∈ ∆m, σ ∈ Sm be a

permutation on m-letters, p ∈ R, and M ∈ GLn, the set of n× n invertible matrices. Denote

ωσ := (wσ1 , . . . , wσm) ,

Aσ := (Aσ1 , . . . , Aσm) ,

Ap := (Ap
1, . . . , A

p
m) ,

MAM∗ := (MA1M
∗, . . . ,MAmM

∗) ,
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and
ω̂ :=

1

1− wm

(w1, . . . , wm−1) ∈ ∆m−1,

ω(k) :=
1

k
(w1, . . . , w1󰁿 󰁾󰁽 󰂀

k

, . . . , wm, . . . , wm󰁿 󰁾󰁽 󰂀
k

) ∈ ∆mk,

A(k) := (A1, . . . , A1󰁿 󰁾󰁽 󰂀
k

, . . . , Am, . . . , Am󰁿 󰁾󰁽 󰂀
k

) ∈ Pmk
n .

For the completeness, we recall some properties that were obtained in [49].

Proposition 3.1.1. The weighted right mean Rα,z satisfies the following:

(i) Rα,z(ω,A) =

󰀣
m󰁛

j=1

wjA
1−α
j

󰀤 1
1−α

if Aj are commuting.

(ii) Rα,z(ω, cA) = cRα,z(ω,A) for any c > 0.

(iii) Rα,z (ωπ,Aπ) = Rα,z(ω,A) for any permutation π on {1, . . . ,m}.

(iv) Rα,z

󰀃
ω(k),A(k)

󰀄
= Rα,z(ω,A) for any natural number k.

(v) Rα,z (ω, UAU∗) = URα,z(ω,A)U∗ for any unitary matrix U .

(vi) detRα,z(ω,A) ≥
m󰁜

j=1

(detAj)
wj , and equality holds if and only if A1 = · · · = Am.

(vii) X = Rα,z (ω, A1, . . . , Am−1, X) implies that X = Rα,z (ω̂, A1, . . . , Am−1).

(viii) Rα,z(ω,A) = Rα,z

󰀣
k󰁛

j=1

wj, wk+1, . . . , wm;A1, Ak+1, . . . , Am

󰀤
if A1 = · · · = Ak for

1 ≤ k < m.

(ix) For 1
2
≤ z ≤ 1,

Rα,z(ω,A)
1−α
z ≤ A

󰀓
ω,A

1−α
z

󰀔
.

(x) Let 0 < α ≤ z < 1. If Rα,z(ω,A) ≤ I , then

Rα,z(ω,A)1−
α
z ≥ A

󰀃
ω,A1−α

󰀄
.
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If Rα,z(ω,A) ≥ I , then the reverse inequality holds.

(xi) Let 0 < α ≤ z < 1. If Rα,z(ω,A) ≥ I then

Rα,z(ω,A)1−
α
z ≤ Pz

󰀓
ω,A

1−α
z

󰀔
.

If Rα,z(ω,A) ≤ I , then the reverse inequality holds.

The matrix norm ||| · ||| on Mn is said to be unitarily invariant if |||UAV ||| = |||A||| for

any matrix A ∈ Mn and unitary matrices U, V . In [49, Remark 3.6] the authors showed the

following

|||A
󰀃
ω,A1−α

󰀄
||| ≤ |||Rα,z(ω,A)||| and |||Pz

󰀓
ω,A

1−α
z

󰀔
||| ≤ |||Rα,z(ω,A)|||.

We establish an upper bound as follows.

Proposition 3.1.2. For 0 ≤ α ≤ z ≤ 1,α ∕= 1, we have

󰀂Rα,z(ω,A)󰀂 ≤
󰀓 m󰁛

j=1

wj󰀂Aj󰀂1−α
󰀔 1

1−α
.

Proof. Let X = Rα,z(ω;A). By the triangle inequality, the sub-multiplicativity for the operator

norm, and the fact that 󰀂At󰀂 = 󰀂A󰀂t for any positive definite A and t ≥ 0, from equation

(3.1.13) we get

󰀂Rα,z(ω,A)󰀂 = 󰀂X󰀂 =
󰀐󰀐󰀐

m󰁛

j=1

wj

󰀓
X

α
2zA

1−α
z

j X
α
2z

󰀔z󰀐󰀐󰀐

≤
m󰁛

j=1

wj

󰀐󰀐󰀐X
α
2zA

1−α
z

j X
α
2z

󰀐󰀐󰀐
z

≤
m󰁛

j=1

wj󰀂X󰀂α.󰀂Aj󰀂1−α.
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Therefore,

󰀂X󰀂1−α ≤
m󰁛

j=1

wj󰀂Aj󰀂1−α.

Consequently,

󰀂Rα,z(ω,A)󰀂 = 󰀂X󰀂 ≤
󰀓 m󰁛

j=1

wj󰀂Aj󰀂1−α
󰀔 1

1−α
.

We derive a version of the AM-GM inequality for the α-z-weighted right mean. However,

we need the following lemma ([61]).

Lemma 3.1.3. Let T > 0. The following inequalites hold:

1. λT + I − λI ≥ T λ for λ ∈ [0, 1].

2. λT + I − λI ≤ T λ for λ > 1.

3. λT + I − λI ≤ T λ for λ < 0.

4. λT + I − λI ≥ T λ ≥ (λT−1 + I − λI)
−1 for λ ∈ [0, 1].

Theorem 3.1.3. Let 0 ≤ α ≤ z ≤ 1,α ∕= 1, z ∕= 0. Let A = (A1, ..., Am) be a m-tuple of

positive definite matrices, and ω = (w1, ..., wm) a probability vector. We have

1 + z − α

1− α
I − z

1− α

m󰁛

j=1

wjA
− 1−α

z
j ≤ Rα,z(ω,A) ≤

󰀓1 + z − α

1− α
I − z

1− α

m󰁛

j=1

wjA
1−α
z

j

󰀔−1

.

The second inequality holds when (1 + z − α)I − z
m󰁓
j=1

wjA
1−α
z

j is invertible.

Proof. Recall that Rα,z(ω,A) is the unique solution of the following equation

X =
m󰁛

j=1

wjX
α
2z

󰀓
A

1−α
z

j 󰂒1−zX
−α

z

󰀔
X

α
2z .

52



Multiplying both sides of the above inequality from the left and from the right by X− α
2z we get

X
z−α
z =

m󰁛

j=1

wj

󰀓
A

1−α
z

j 󰂒1−zX
−α

z

󰀔
.

By the AM-GM inequality,

X
z−α
z ≤

m󰁛

j=1

wj

󰀓
zA

1−α
z

j + (1− z)X−α
z

󰀔

=
m󰁛

j=1

wjzA
1−α
z

j + (1− z)X−α
z .

Therefore,

X1−α
z − (1− z)X−α

z ≤
m󰁛

j=1

wjzA
1−α
z

j . (3.1.15)

Let ϕ(X) = X1+t − (1− z)X t, where t = −α

z
∈ [−1, 0]. By Lemma 3.1.3, we have

ϕ(X) = X− 1
2X2+tX− 1

2 − (1− z)X− 1
2X1+tX− 1

2

≥ X− 1
2

󰀓
(2 + t)X − (1 + t)I

󰀔
X− 1

2 − (1− z)X− 1
2

󰀓
(1 + t)X − tI

󰀔
X− 1

2

= (2 + t)I − (1 + t)X−1 − (1− z)(1 + t)I + (1− z)tX−1

= (α− 1)X−1 + (1 + z − α)I.

Therefore, from (3.1.15) we get

(α− 1)X−1 + (1 + z − α)I ≤
m󰁛

j=1

wjzA
1−α
z ,

or,

X−1 ≥ 1 + z − α

1− α
I − z

1− α

m󰁛

j=1

A
1−α
z

j .
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Consequently,

X ≤
󰀓1 + α− z

1− α
I − z

1− α

m󰁛

j=1

wjA
1−α
z

j

󰀔−1

.

Now let us prove the first inequality in Theorem. By the harmonic mean-geometric mean

inequality we have

X
z−α
z =

m󰁛

j=1

wj

󰀓
A

1−α
z

j 󰂒1−zX
−α

z

󰀔
≥

m󰁛

j=1

wj

󰀓
zA

− 1−α
z

j + (1− z)X
α
z

󰀔−1

.

Since the map x 󰀁→ x−1 is convex, from the last inequality we get

X
α−z
z ≤

󰁫 m󰁛

j=1

wj

󰀓
zA

− 1−α
z

j + (1− z)X
α
z

󰀔−1󰁬−1

≤
m󰁛

j=1

wj

󰀓
zA

− 1−α
z

j + (1− z)X
α
z

󰀔

=
m󰁛

j=1

wjzA
− 1−α

z
j + (1− z)X

α
z .

Consequently,

X
α
z
−1 − (1− z)X

α
z ≤

m󰁛

j=1

wjzA
− 1−α

z
j . (3.1.16)

Let Ψ(X) = Xp−1 − (1− z)Xp, where p =
α

z
∈ [0, 1]. Using Lemma 3.1.3 again we obtain

Ψ(X) ≥ (p− 1)X + (2− p)I − (1− z)
󰀓
pX + (1− p)I

󰀔

=
󰀓
p− 1− (1− z)p

󰀔
X +

󰀓
2− p− (1− z)(1− p)

󰀔
I

= (α− 1)X + (1 + z − α)I.

From (3.1.16) we get

(α− 1)X + (1 + z − α)I ≤
m󰁛

j=1

wjzA
− 1−α

z
j ,

54



or,

X ≥ 1 + z − α

1− α
I − z

1− α

m󰁛

j=1

A
− 1−α

z
j .

The matrix power mean Pt(ω,A) for t ∈ (0, 1] was introduced by Lim and Palfia [60] as the

unique solution X ∈ Pn of the following equation

X =
m󰁛

j=1

wjX#tAj. (3.1.17)

Note that for t ∈ [−1, 0) we define Pt(ω,A) = P−t (ω,A−1)
−1. Especially,

P1(ω,A) =
m󰁛

j=1

wjAj = A(ω,A),

P−1(ω,A) =

󰀥
m󰁛

j=1

wjA
−1
j

󰀦−1

= H(ω,A)

are the weighted arithmetic and harmonic means, respectively.

Let ω = (w1, w2, ..., wm) be a probability vector, for m ≥ 2, a weighted m-mean Gm defined

on Pm
n is an idempotent map Gm(ω, ·) : Pm

n −→ Pn, that is, Gm(ω, X,X, ..., X) = X , for all

X ∈ Pn. Let Am := Am(ω,A) =
m󰁛

j=1

wjAj and Hm := Hm(ω,A) =
󰀓 m󰁛

j=1

wjA
−1
j

󰀔−1

be the

arithmetic mean and the harmonic mean, respectively. In [48], Hwang and Kim proved that for

any Gm between Am and Hm, i.e.,

Hm ≤ Gm ≤ Am, (3.1.18)

the function Gω
m := Gm(ω, ·) : Pm → P is differentiable at I = (I, ..., I) with

DGω
n (I)(X1, ..., Xm) =

m󰁛

j=1

wjXj.
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Notice that the α-z-weighted right mean does not satisfy the inequality (3.1.18). However

we have the following result.

Theorem 3.1.4. Let ω = (w1, ..., wm) be a probability vector and let Rω
α,z := Rα,z(ω, ·) :

Pm
n −→ Pn. Then Rω

α,z is differentiable at I = (I, ..., I), and

DRω
α,z(I)(X1, ..., Xm) =

m󰁛

j=1

wjXj.

Proof. Let X1, X2, ..., Xm ∈ Hn . If X1 = X2 = ... = Xm = 0 then the result is obvious.

Without loss of generality, we assume that there exists i ∈ {1, 2, ...,m} such that Xi ∕= 0. Let

τ = max{spr(Xi) : i = 1, 2, ...,m} > 0, where spr(X) is the spectral radius of X . Consider

the following functions

f(t) =
1 + z − α

1− α
I − z

1− α

m󰁛

j=1

wj(I + tXj)
− 1−α

z ,

and

g(t) =
󰀓1 + z − α

1− α
I − z

1− α

m󰁛

j=1

wj(I + tXj)
1−α
z

󰀔−1

.

Since

λ(I + tXj) = 1 + tλ(Xj)

≥ 1− |t||λ(Xj)|

≥ 1− ρ|t|

> 0,

where λ(X) is some eigenvalue of X , we have, I + tXj ∈ Pn, for all t ∈ (− 1
τ
, 1
τ
). Therefore,

f(t) and g(t) are well-defined on (− 1
τ
, 1
τ
), and f(0) = g(0) = I. We have

d

dt
(I + tXj)

− 1−α
z = −(I + tXj)

− 1−α
z

d

dt
(I + tXj)

1−α
z (I + tXj)

− 1−α
z .
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At t = 0, we have
d

dt
(I + tXj)

− 1−α
z

󰀏󰀏󰀏󰀏
t=0

= −1− α

z
Xj.

Consequently,
d

dt
f(t)

󰀏󰀏󰀏󰀏
t=0

=
m󰁛

j=1

wjXj.

Similarly,
d

dt
g(t) = −h(t)−1 d

dt
h(t)h(t)−1,

where h(t) = g(t)−1. Since h(0) = I and

d

dt
h(t)

󰀏󰀏󰀏󰀏
t=0

= −
m󰁛

j=1

wjXj,

we obtain
d

dt
g(t)

󰀏󰀏󰀏󰀏
t=0

=
m󰁛

j=1

wjXj.

By Theorem 3.1.3, we have

f(t)− I ≤ Rω
α,z(ω, I + tX1, ..., I + tXm)− I ≤ g(t)− I.

Since Rω
α,z(ω, I, ..., I) = I , for any sufficiently small t > 0, we have

f(t)− f(0)

t
≤

Rω
α,z(ω, I + tX1, ..., I + tXm)−Rω

α,z(ω, I, ..., I)

t
≤ g(t)− g(0)

t
.

Let t → 0+, from the above inequality, we obtain

lim
t→0+

Rω
α,z(ω, I + tX1, ..., I + tXm)−Rω

α,z(ω, I, ..., I)

t
=

m󰁛

j=1

wjXj.
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Similarly, for t < 0 we have

lim
t→0−

Rω
α,z(ω, I + tX1, ..., I + tXm)−Rω

α,z(ω, I, ..., I)

t
=

m󰁛

j=1

wjXj.

Thus, Rω
α,z is differentiable at I = (I, ..., I) and

DRω
α,z(I)(X1, ..., Xm) =

m󰁛

j=1

wjXj.

The well-known Lie-Trotter formula [76] states that for X, Y ∈ Mn,

lim
n→+∞

󰀓
exp(

X

n
) exp(

Y

n
)
󰀔n

= exp(X + Y ).

This formula plays an essential role in the development of Lie Theory, and frequently appears

in different research fields [44, 47, 48]. In [48], J.Hwang and S.Kim introduced the multi-

variate Lie-Trotter mean on the convex cone Pn of positive definite matrices. For a positive

probability vector ω = (w1, ..., wm) and differentiable curves γ1, ..., γm on Pn with γi(0) = I

(i = 1, · · · ,m), a weighted m-mean Gm (for m ≥ 2) is the multivariate Lie-Trotter mean if

lim
s→0

Gm(ω, γ1(s), γ2(s), , ..., γm(s))
1/s = exp

󰀓 m󰁛

j=1

wjγ
′
j(0)

󰀔
.

In the following theorem, we show that the mean Rα,z(ω,A) is also a multivariate Lie-Trotter

mean.

Theorem 3.1.5. The Rα,z(ω,A) is the multivariate Lie-Trotter mean, that means, for any prob-

ability vector ω = (w1, w2, ., wm), we have

lim
s→0

Rα,z(ω, γ1(s), ..., γm(s))
1/s = exp

󰀓 m󰁛

j=1

wjγ
′
j(0)

󰀔
,
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where for ε > 0, γj : (−ε, ε) −→ Pn are differentiable curves with γj(0) = I , for all j =

1, 2, ...,m.

Proof. For each j = 1, 2, ...,m, since γj is a continuous map with γj(0) = I , there exists δj > 0

such that γj(s) ∈ Br(I) =

󰀫
A ∈ Hn : ||A − I|| < r = 1 −

󰀓 z

1 + z − α

󰀔 z
1−α

> 0

󰀬
, ∀s ∈

(−δj, δj). Therefore,

󰀏󰀏󰀏λi

󰀓
γj(s)

󰀔
− 1

󰀏󰀏󰀏 =
󰀏󰀏󰀏λi

󰀓
γj(s)− I

󰀔󰀏󰀏󰀏 ≤ ||γj(s)− I|| ≤ r,

where λi(A) is the i-th eigenvalue of A ∈ Hn in the decreasing order. Therefore,

λi

󰀃
γj(s)

󰀄
≥ 1− r =

󰀓 z

1 + z − α

󰀔 z
1−α

.

From here it implies that

γj(s) ≥
󰀓 z

1 + z − α

󰀔 z
1−α

I, or, γj(s)
− 1−α

z ≤ 1 + z − α

z
I.

Consequently,

z
m󰁛

j=1

wjγj(s)
− 1−α

z ≤ (1 + z − α)I.

By Theorem 3.1.3, we have

1 + z − α

1− α
I− z

1− α

m󰁛

j=1

wjγ
− 1−α

z
j (s) ≤ Rα,z(ω,A) ≤

󰀣
1 + z − α

1− α
I− z

1− α

m󰁛

j=1

wjγ
1−α
z

j (s)

󰀤−1

.

According to the operator monotonicity of the logarithmic function, from the last inequalities
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for s > 0 we get

1

s
log

󰀣
1 + z − α

1− α
I − z

1− α

m󰁛

j=1

wjγ
− 1−α

z
j (s)

󰀤
≤ 1

s
logRα,z(ω, γ1(s), ..., γm(s))

≤ 1

s
log

󰀣
1 + z − α

1− α
I − z

1− α

m󰁛

j=1

wjγ
1−α
z

j (s)

󰀤−1

.

Using the L’Hopital rule, we obtain

lim
s→0+

logRα,z(ω, γ1(s), ..., γm(s))
1
s =

m󰁛

j=1

γ′
j(0).

Similarly, for s < 0 we also have

lim
s→0−

logRα,z(ω, γ1(s), ..., γm(s))
1
s =

m󰁛

j=1

γ′
j(0).

Thus,

lim
s→0

Rα,z(ω, γ1(s), ..., γm(s))
1/s = exp

󰀓 m󰁛

j=1

wjγ
′
j(0)

󰀔
.

3.2 Data processing inequality and in-betweenness property

In this section we show that the α-z-Bures Wasserstein divergence satisfies the data process-

ing inequality in quantum information theory. We also show that the matrix power mean satisfies

the in-betweenness property in this divergence.

Recall that the data processing inequality with respect to a quantum divergence Ψ means that

for any completely positive trace preserving map E and for any positive semi-definite matrices

A and B,

Ψ(E(A), E(B)) ≤ Ψ(A,B).
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It is worth noting that (see, for examples, [81, Theorem 5.16]) if a map Ψ(A,B) is jointly

convex, unitarily invariant and invariant under tensor product, then Ψ is monotone with respect

to all completely positive trace-preserving maps.

By the definition, the map Φ(A,B) is jointly convex. Indeed, according to [19], the trace

function Θp,q,s(X, Y ) = Tr
󰁫󰀓

X
q
2Y pX

q
2

󰀔s󰁬
is jointly concave if only if 0 ≤ p, q ≤ 1 and

0 ≤ s ≤ 1

p+ q
. For q =

1− α

z
, p =

α

z
, and s = z, we have that the function Tr

󰀓
Qα,z(X, Y )

󰀔

is jointly concave. Hence, Φ(X, Y ) is jointly convex. Therefore, from the following theorem it

implies that the α-z-Bures Wasserstein divergence satisfies the data processing inequality.

Theorem 3.2.1. Φ(X, Y ) is invariant under all unitary matrix U and invariant under tensoring

with another density matrix τ .

Proof. For an arbitrary unitary U , we have

Φ(U∗XU,U∗Y U) = Tr
󰁫
(1− α)U∗XU + αU∗Y U −

󰀓
(U∗XU)

1−α
2z (U∗Y U)

α
z (U∗XU)

1−α
2z

󰀔z󰁬

= Tr
󰁫
(1− α)U∗XU + αU∗Y U −

󰀓
U∗X

1−α
2z UU∗Y

α
z UU∗X

1−α
2z U

󰀔z󰁬

= Tr
󰁫
(1− α)U∗XU + αU∗Y U −

󰀓
U∗X

1−α
2z Y

α
z X

1−α
2z U

󰀔z󰁬

= Tr
󰁫
(1− α)U∗XU + αU∗Y U − U∗

󰀓
X

1−α
2z Y

α
z X

1−α
2z

󰀔z

U
󰁬

= Tr
󰁫
U∗

󰀓
(1− α)X + αY − (X

1−α
2z Y

α
z X

1−α
2z )z

󰀔
U
󰁬

= Tr
󰀓
(1− α)X + αY − (X

1−α
2z Y

α
z X

1−α
2z )z

󰀔

= Φ(X, Y ).
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Also for an arbitrary density matrix τ, we have

Φ(X ⊗ τ, Y ⊗ τ) = Tr
󰁫
(1− α)X ⊗ τ + αY ⊗ τ −

󰀓
(X ⊗ τ)

1−α
2z (Y ⊗ τ)

α
z (X ⊗ τ)

1−α
2z

󰀔z󰁬

= Tr
󰁫
(1− α)X ⊗ τ + αY ⊗ τ −

󰀓
(X

1−α
2z ⊗ τ

1−α
2z )(Y

α
z ⊗ τ

α
z )(X

1−α
2z ⊗ τ

1−α
2z )

󰀔z󰁬

= Tr
󰁫
(1− α)X ⊗ τ + αY ⊗ τ − Tr

󰁫󰀓
X

1−α
2z Y

α
z X

1−α
z ⊗ τ

1
z

󰀔z󰁬

= Tr
󰁫
(1− α)X ⊗ τ + αY ⊗ τ − Tr

󰁫󰀓
X

1−α
2z Y

α
z X

1−α
z

󰀔z

⊗ τ
󰁬

= Tr
󰁫󰀓

(1− α)X + αY −
󰀓
X

1−α
2z Y

α
z X

1−α
2z

󰀔z󰀔
⊗ τ

󰁬

= Tr
󰀓
(1− α)X + αY −

󰀓
X

1−α
2z Y

α
z X

1−α
2z

󰀔z󰀔
Tr(τ)

= Tr
󰀓
(1− α)X + αY −

󰀓
X

1−α
2z Y

α
z X

1−α
2z

󰀔z󰀔

= Φ(X, Y ).

To finish this section, we show that the matrix power mean µp(t;A,B) =
󰀓
tAp+(1−t)Bp

󰀔 1
p

satisfies the in-betweenness property with respect to the α-z-Bures Wasserstein divergcence.

Theorem 3.2.2. Let A,B ∈ Pn, 0 < α ≤ z ≤ 1, 1/2 ≤ p ≤ 1 and α ≤ zp. Then for any

positive definite matrices A and B,

Φ(A, µp) ≤ Φ(A,B). (3.2.19)

Proof. We have

Φ(A, µp) = Tr
󰁫
(1− α)A+ αµp −

󰀓
A

1−α
z µ

α
z
p A

1−α
z

󰀔z󰁬
,

and

Φ(A,B) = Tr
󰁫
(1− α)A+ αB −

󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z󰁬
.
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Therefore, the inequality (3.2.19) is equivalent to the following

Tr
󰁫
α
󰀓
tAp+(1−t)Bp

󰀔 1
p−

󰀓
A

1−α
2z (tAp+(1−t)Bp)

α
zpA

1−α
2z

󰀔z󰁬
≤ Tr

󰁫
αB−

󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z󰁬
.

Since 1 ≤ 1
p
≤ 2 when 1

2
≤ p ≤ 1, the map x 󰀁→ x

1
p is operator convex. Therefore,

󰀓
tAp + (1− t)Bp

󰀔 1
p ≤ tA+ (1− t)B.

On the other hand, from the conditions 0 < α ≤ z and α ≤ zp it implies that 0 ≤ α

zp
≤ 1. By

the operator concavity of the map x 󰀁→ x
α
zp , we have

A
1−α
2z µ

α
z
p A

1−α
2z = A

1−α
2z

󰀓
tAp + (1− t)Bp

󰀔 α
zp
A

1−α
2z

≥ A
1−α
2z

󰀓
tA

α
z + (1− t)B

α
z

󰀔
A

1−α
z

= tA
1
z + (1− t)A

1−α
2z B

α
z A

1−α
2z .

For 0 < z ≤ 1 the function tz is operator concave on (0,∞). Then we have

󰁫
A

1−α
2z

󰀓
tAp + (1− t)Bp

󰀔 α
zp
A

1−α
2z

󰁬z
≥

󰁫
tA

1
z + (1− t)A

1−α
2z B

α
z A

1−α
2z

󰁬z

≥ tA+ (1− t)
󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z

.

Thus, the desired result follows if

Tr
󰁫
αtA+ αB − αtB − tA− (1− t)

󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z󰁬
≤ Tr

󰁫
αB −

󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z󰁬
.

Or, equivalently,

Tr
󰁫
(1− α)A+ αB −

󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z󰁬
≥ 0

which was proved in Theorem 3.1.1. Thus, the matrix power mean µp satisfies the in-betweenness

property in the α-z-Bures Wasserstein divergcence.
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3.3 Quantum fidelity and its parameterized versions

Quantum fidelity is an important quantity in quantum information theory and quantum chaos

theory. It is a distance measure between density matrices which are considered as quantum

states. Although it is not a metric, it has many useful properties that can be used to define a metric

on the space of density matrices. In this section, we present an inequality for quantum fidelity,

along with several of its extended forms and properties. Firstly, let we recall the definition of

quantum fidelity [64, 80].

Definition 3.3.1. Let A,B ∈ Pn be positive semi-definite matrices. The fidelity between two

elements A and B is defined as

F (A,B) = ||
√
A
√
B||1, (3.3.20)

where ||.||1 is Schatten 1-norm (trace norm),

||A||1 = Tr |A| = Tr
√
AA∗.

Alternatively, the trace norm of an operator (or a matrix) A can be expressed as the sum of

its singular values, ||A||1 =
n󰁓

i=1

si(A).

In quantum theory, quantum fidelity is defined for density matrices, and it can be generalized

to the set of positive semi-definite matrices. By (3.3.20), we have

F (A,B) = Tr
󰀓
A1/2BA1/2

󰀔1/2

.

When A,B ∈ Dn, quantum fidelity have several important properties [64, 78, 80], which

can be proved in the sense of unital C∗-algebras

(1) Bounds: 0 ≤ F (A,B) ≤ 1. Furthermore F (A,B) = 1 iff A = B, while F (A,B) = 0 iff

supp(A) ⊥ supp(B).
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(2) Symmetry: F (A,B) = F (B,A).

(3) Unitary Invariance: F (A,B) = F (UAU∗, UBU∗), for any unitary matrix U .

(4) Concavity: F (A, tB + (1 − t)C) ≥ tF (A,B) + (1 − t)F (A,C), for t ∈ [0, 1] and

A,B,C ∈ Dn.

(5) Multiplicativity: F (A⊗ B,C ⊗D) = F (A,C) · F (B,D), for A,B,C,and D ∈ Dn.

(6) Joint concavity: F (tA + (1 − t)B, tc + (1 − t)D) ≥ tF (A,C) + (1 − t)F (B,D), for

t ∈ [0, 1] and A,B,C, and D ∈ Dn.

One of the most important inequalities of quantum fidelity is Fuchs de Graaf’s inequality

[80, 84].

Theorem 3.3.1. (Fuchs-van de Graaf’s inequality) For A,B ∈ Dn, we have

1− 1

2
||A− B||1 ≤ F (A,B) ≤

󰁵
1− 1

4
||A− B||21. (3.3.21)

Equivalently,

2− 2F (A,B) ≤ ||A− B||1 ≤ 2
󰁳

1− F (A,B)2. (3.3.22)

The above inequality provides an upper bound and lower bound of quantum fidelity. It is

also a tight relationship between different distances between A and B. The proof of the right

inequality of (3.3.22) is based on Uhlmann’s theorem [68] while the proof of the left inequality

of (3.3.22) based on the following result [80].

Lemma 3.3.1. Let A,B ∈ Pn be positive semi-definite matrices. It holds that

||A− B||1 ≥ ||
√
A−

√
B||22,

where ||.||2 is the Shcatten 2-norm,

||A||2 =
󰀓 n󰁛

i=1

s2i (A)
󰀔1/2

.
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It is worth mentioning that it is difficult to improve the Fuchs-van de Graaf inequality. In

[84], the authors established a lower bound for F (A,B) as follows.

Let λ0 = λmax(B
−1/2AB−1/2), where λmax(X) is used to denote the maximum eigenvalue

of the matrix X . Then

F (A,B) ≥ 1− 1

2

√
λ0√

λ0 + 1
||A− B||1.

Now we establish an estimate for the trace-norm of the difference for two density matrices A

and B and the fidelity of A and the convex combination tA + (1 − t)B, t ∈ [0, 1] of A and B.

Before presenting this result, let’s recall the following well-known inequality [4, 73, 74]

db(A,B) ≤ d
1/2
1 (A,B),

where A,B ∈ Pn. This inequality was first proved in C∗-algebra setting by Araki in [4]. How-

ever, we can prove this inequality by another way as follows.

By Lemma (3.3.1), we have

||A− B||1 ≥ ||
√
A−

√
B||22 = Tr(

√
A−

√
B)2

= Tr(A+B − 2
√
A
√
B)

≥ TrA+ TrB − 2F (A,B)

= d2b(A,B),

where the last inequality follows from the fact that

F (A,B) = Tr(A1/2BA1/2)1/2 ≥ Tr(A1/2B1/2),

which is the consequence of the famous Araki-Lieb-Thirring inequality [43].
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Theorem 3.3.2. Let A,B ∈ Dn and t ∈ [0, 1]. Then

󰁳
F (A, tAa+ (1− t)B ≥ 1− 1

4
(1−

√
t)||A− B||1/21 .

Proof. Firstly, let us recall the Jensen inequality for trace. Let f be a continuous and concave

function on an interval J and m be a natural number. Then for self-adjoint matrices X1, · · · , Xm

with spectra in J ,

Tr
󰀓
f
󰀓 m󰁛

i=1

A∗
iXiAi

󰀔󰀔
≥ Tr

󰀓 m󰁛

i=1

A∗
i f(Xi)Ai

󰀔
,

where A1, · · · , Am satisfy
m󰁓
i=1

A∗
iAi = I.

We have

F (A, tA+ (1− t)B) = Tr[A1/2(tA+ (1− t)B)A1/2]1/2

= Tr[tA2 + (1− t)A1/2BA1/2]1/2

≥ Tr[tA+ (1− t)(A1/2BA1/2)1/2]

= t+ (1− t)F (A,B),

where the inequality is valid according to the concavity of the function x 󰀁→ x1/2 and Jensen’s

trace inequality.

From db(A,B) ≤ d
1/2
1 (A,B) = ||A− B||1/21 , we have

1− 1

4
(1−

√
t)||A− B||1/21

≤ 1− 1

4
(1−

√
t)db(A,B)

= 1− 1

4
(1−

√
t)
󰁴

(2− 2Tr(A1/2BA1/2)1/2)

= 1− (1−
√
t)
󰁳

(1− F (A,B)).
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Thus, it is necessary to prove

󰁳
t+ (1− t)F (A,B) ≥ 1− (1−

√
t)
󰁳

(1− F (A,B)).

Since 0 ≤ t ≤ 1, and 0 ≤ F (A,B) ≤ 1, squaring both sides of this inequality, we have

t+ F − tF ≥ 1− 2(1−
√
t)
√
1− F + (1−

√
t)2(1− F )

⇔ (t− 1)(1− F ) + 2(1−
√
t)
√
1− F − (1−

√
t)2(1− F ) ≥ 0

⇔ (1− F )[(t− 1)− (1−
√
t)2] + 2(1−

√
t)
√
1− F ≥ 0

⇔ 2(1−
√
t)[

√
1− F − (1− F )] ≥ 0.

In the above transformations, F is used to denote for F (A,B). The last inequality is evident

because 0 ≤
√
t ≤ 1, and 0 ≤ 1− F (A,B) ≤ 1.

Remark 3.3.1. For t = 0, with ||A− B||1 ≤ 16 and from the theorem we have

F (A,B) ≥ (1− 1

4
||A− B||1/21 )2.

Let’s compare the value (1− 1
4
||A−B||1/21 )2 and the value 1− 1

2
||A−B||1 on the left-hand-

side part in the Fuchs-van de Graaf inequality. By a simple computation, if ||A−B||1 ≥ 64/81

then we have

F (A,B) ≥ (1− 1

4
||A− B||1/21 )2 ≥ 1− 1

2
||A− B||1.

Indeed, from the last inequality we have

(1− 1

4
||A− B||1/21 )2 ≥ 1− 1

2
||A− B||1

⇔ 1− 1

2
||A− B||1/21 +

1

16
||A− B||1 ≥ 1− 1

2
||A− B||1

⇔ ||A− B||1/21

2

󰀓9
8
||A− B||1/21 − 1

󰀔
≥ 0,
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which is equivalent to that

||A− B||1 ≥ 64/81.

Therefore, the above result is a refinement of the Fuchs-van de Graaf inequality for a big set

of quantum states A and B.

Next, in relation to the matrix power mean, we prove an inequality for quantity-called a

parameterized version of quantum fidelity, which was introduced by Bhatia, Jain, and Lim [14].

Definition 3.3.2. Let A,B ∈ Pn, a parameterized version of fidelity defined as

Fα(A,B) = Tr
󰀓
A

1−α
2α BA

1−α
2α

󰀔α

,α ∈ (0,∞).

Proposition 3.3.1. Let A,B ∈ Dn, p ≥ 1 and 0 ≤ t ≤ 1, 0 < α < 1. Then

Fα(A, µp(t;A,B)) ≥ Fα(A,B)

and

Fα(A,Pp(t;A,B)) ≥ Fα(A,B).

Proof. Let p = 1. Notice that the function xα (0 < α < 1) is operator concave, and that

0 ≤ Fα(A,B) ≤ Tr
󰀓
tA+ (1− t)B

󰀔
= t+ 1− t = 1 [14, Theorem 11]. We have

Fα(A, µ1(t;A,B)) = Tr
󰀓
A

1−α
2α

󰀓
tA+ (1− t)B

󰀔
A

1−α
2α

󰀔α

= Tr
󰀓
tA

1
α + (1− t)A

1−α
2α BA

1−α
2α

󰀔α

≥ Tr
󰀓
tA+ (1− t)

󰀓
A

1−α
2α BA

1−α
2α

󰀔α󰀔

= t+ (1− t)Fα(A,B)

≥ Fα(A,B).

Now, let us consider the case where p > 1. In this case, the function x 󰀁→ x1/p is operator
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concave, hence

µp(t;A,B) =
󰀓
tAp + (t− 1)Bp

󰀔1/p

≥ tA+ (1− t)B = µ1(t;A,B).

This implies

Fα(A, µp(t;A,B)) ≥ Fα(A, µ1(t;A,B)),

from which the result for µp(t;A,B) follows.

The proof for Pp(t;A,B) is similar to P1(t;A,B) = µ1(t;A,B) and

󰀓
tI + (1− t)(A−1/2BA−1/2)p

󰀔1/p

≥ tI + (1− t)(A−1/2BA−1/2),

which implies

Fα(A,Pp(t;A,B)) ≥ Fα(A,P1(t;A,B)).

A parameterized version with two parameters was introduced by Audenaert and Datta, called

α-z-fidelity [7] and defined by

fα,z(ρ, σ) := Tr
󰀃
ρα/2zσ(1−α)/zρα/2z

󰀄z
= Tr

󰀃
σ(1−α)/2zρα/zσ(1−α)/2z

󰀄z
. (3.3.23)

We list some basic properties of the α-z-fidelity as follows [7, 83].

Proposition 3.3.2. Let ρ and σ be density matrices. Then,

1. fα,z(ρ, σ) ≤ 1 for 0 < α < 1 and z > 0.

2. fα,z(ρ, σ) ≥ 1 for α > 1 and z > 0.

3. For α ∈ (0, 1) ∪ (1,+∞) and z > 0, fα,z(ρ, σ) = 1 if and only if ρ = σ.

Proposition 3.3.3. Let ρ and σ be density matrices such that supp ρ ⊆ supp σ, and Λ be a

completely positive trace preserving map (a quantum channel).
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1. If α ∈ (0, 1] and z ≥ max{α, 1− α}, then

fα,z(Λ(ρ),Λ(σ)) ≥ fα,z(ρ, σ).

2. If α ∈ [1, 2] and z ∈
󰀋
1, α

2

󰀌
, or α ≥ 1 and z = α, then

fα,z(Λ(ρ),Λ(σ)) ≤ fα,z(ρ, σ).

For z = α, Bhatia and coauthors [14] established some variational formulas for fα,α(ρ, σ)

via extreme values of the following matrix functions.

Theorem 3.3.3. Let ρ and σ be positive definite matrices and let 0 < α < 1. Then

1. fα,α(ρ, σ) = min
X>0

Tr[(1− α)
󰀓
σ

α−1
2α Xσ

α−1
2α

󰀔 α
α−1

+ αXρ].

2. fα,α(ρ, σ) = min
X>0

Tr[(σ
α−1
2α Xσ

α−1
2α )

α
α−1 ]1−α[Tr(Xρ)]α.

3. fα,α(ρ, σ) = min
X>0

Tr[ασ
1−α
α X + (1− α)(ρ−

1
2Xρ−

1
2 )

α
α−1 ].

4. fα,α(ρ, σ) = min
X>0

[Tr σ
1−α
α X]α[Tr((ρ−

1
2Xρ−

1
2 )

α
α−1 ]1−α.

Recently, S.Chehade [20] used the classical matrix inequalities to prove that for α > 1 and

z > 1,

fα,z(ρ, σ) = max
X>0

P (X),

where

P (X) = zTr
󰀓
σ

z−α
2z ρ

α
z σ

z−α
2z X

󰀔
− (z − 1)Tr

󰀓
σ

z−1
2z Xσ

z−1
2z

󰀔 z
z−1

.

In this section, we show that fα,z(ρ, σ) is also the minimum of P (X) when 0 < α < z < 1.

In addition, fα,z(ρ, σ) = min
X>0

Q(X), where

Q(X) =
󰀓
Tr(σ

z−α
2z ρ

α
z σ

z−α
2z X)

󰀔z

.
󰀓
Tr(σ

z−1
2z Xσ

z−1
2x )

z
z−1

󰀔1−z

.
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In order to prove the main result of this section we need the following lemmas that can be

found in [14].

Lemma 3.3.2. Let f be a smooth function on R+ and let f̂ be the function on Pn defined as

f̂(X) = Tr f(X). Then for all X ∈ Pn and Y ∈ Hn.

Df̂(X)(Y ) = Tr (f ′(X)Y ) .

Lemma 3.3.3. The function f(X) = TrX t on the set of positive definite matrices is strictly

concave if 0 < t < 1 and strictly convex if t ∈ (−∞, 0) ∪ (1,∞).

Theorem 3.3.4. Let ρ, σ be positive definite matrices and 0 < α < z < 1. We have

(i) fα,z(ρ, σ) = min
X>0

P (X).

(ii) fα,z(ρ, σ) = min
X>0

Q(X).

Furthermore, the minimum is achieved at X0 = σ
1−z
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−z
2z .

Proof. (i). Let k(X) = TrX
z

z−1 and h(X) = Tr(σ
z−1
2z Xσ

z−1
2z )

z
z−1 . By Lemma 3.3.2, we have

Dk(X)(Y ) =
z

z − 1
Tr(X

1
z−1Y ). By the chain rule, we have

Dh(X)(Y ) = Dk(σ
z−1
2z Xσ

z−1
2z )(σ

z−1
2z Y σ

z−1
2z )

=
z

z − 1
Tr

󰀓
(σ

z−1
2z Xσ

z−1
2z )

1
z−1 (σ

z−1
2z Y σ

z−1
2z )

󰀔

=
z

z − 1
Tr

󰀓
σ

z−1
2z (σ

z−1
2z Xσ

z−1
2z )

1
z−1σ

z−1
2z Y

󰀔

=
z

z − 1
Tr

󰀓
σ

z−1
2z (σ

1−z
2z X−1σ

1−z
2z )

1
1−zσ

z−1
2z Y

󰀔
.

Consequently,

DP (X)(Y ) = zTr(σ
z−α
2z ρ

α
z σ

z−α
2z Y )− zTr

󰀓
σ

z−1
2z (σ

1−z
2z X−1σ

1−z
2z )

1
1−zσ

z−1
2z Y

󰀔
,
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and hence, DP (X)(Y ) = 0 for all Y ∈ Hn if only if

σ
z−α
2z ρ

α
z σ

z−α
2z = σ

z−1
2z (σ

1−z
2z X−1σ

1−z
2z )

1
1−zσ

z−1
2z .

Multiplying both sides of the above identity from the left and from the right by σ
1−z
2z we get

σ
1−α
2z ρ

α
z σ

1−α
2z = (σ

1−z
2z X−1σ

1−z
2z )

1
1−z = (σ

z−1
2z Xσ

z−1
2z )

1
z−1 .

From here we get

(σ
1−α
2z ρ

α
z σ

1−α
2z )z−1 = σ

z−1
2z Xσ

z−1
2z ,

or,

X = σ
1−z
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−z
2z .

According to Lemma 3.3.3, the function P (X) is convex. Therefore, P (X) attains a minimum

at

X0 = σ
1−z
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−z
2z .

Now we have

Tr(σ
z−α
2z ρ

α
z σ

z−α
2z X0) = Tr

󰀓
σ

z−α
2z ρ

α
z σ

z−α
2z σ

1−z
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−z
2z

󰀔

= Tr
󰀓
ρ

α
z σ

1−α
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−α
2z

󰀔

= Tr
󰀓
ρ

α
z σ

1−α
2z (σ

α−1
2z ρ−

α
z σ

α−1
2z )1−zσ

1−α
2z

󰀔

= Tr
󰀓
ρ

α
z (σ

1−α
z 󰂒1−zρ

−α
z )
󰀔

= Tr
󰀓
ρ

α
2zσ

1−α
z ρ

α
2z 󰂒1−zI

󰀔

= Tr(ρ
α
2zσ

1−α
z ρ

α
2z )z

= Tr(σ
1−α
2z ρ

α
z σ

1−α
2z )z,
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and

Tr
󰀓
(σ

z−1
2z X0σ

z−1
2z )

z
z−1

󰀔
= Tr

󰀓
σ

z−1
2z σ

1−z
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−z
2z σ

z−1
2z

󰀔 z
z−1

= Tr(σ
1−α
2z ρ

α
z σ

1−α
2z )z.

Therefore,

P (X0) = zTr
󰀓
σ

z−α
2z ρ

α
z σ

z−α
2z X0

󰀔
− (z − 1)Tr

󰀓
σ

z−1
2z X0σ

z−1
2z

󰀔 z
z−1

= zTr(σ
1−α
2z ρ

α
z σ

1−α
2z )z − (z − 1)Tr(σ

1−α
2z ρ

α
z σ

1−α
2z )z

= Tr(σ
1−α
2z ρ

α
z σ

1−α
2z )z

= fα,z(ρ, σ).

(ii). Now, we prove fα,z(ρ, σ) = min
X>0

Q(X). The Hölder inequality states that for positive

numbers p, q, r with
1

p
+

1

q
=

1

r
, we have

Tr |ST |r ≤ (Tr |S|p)
r
p (Tr |T |q)

r
q , (3.3.24)

where |X| = (X∗X)
1
2 be the absolute value of X . Applying (3.3.24) for S = ρ

α
2zσ

z−α
2z X

1
2 , T =

X− 1
2σ

1−z
2z and r = 2z, p = 2 and q = 2z

1−z
, we obtain

Tr(σ
1−α
2z ρ

α
z σ

1−α
2z )z = Tr

󰀓
σ

1−z
2z X− 1

2X
1
2σ

z−α
2z ρ

α
2z ρ

α
2zσ

z−α
2z X

1
2X− 1

2σ
1−z
2z

󰀔z

= Tr
󰀓
(X− 1

2σ
1−z
2z )∗(ρ

α
2zσ

z−α
2z X

1
2 )∗(ρ

α
2zσ

z−α
2z X

1
2 )(X− 1

2σ
1−z
2z )

󰀔z

= Tr
󰀏󰀏󰀏(ρ

α
2zσ

z−α
2z X

1
2 )(X− 1

2σ
1−z
2z )

󰀏󰀏󰀏
2z

≤
󰀓
Tr |ρ α

2zσ
z−α
2z X

1
2 |2

󰀔 2z
2
󰀓
Tr |X− 1

2σ
1−z
2z |

2z
1−z

󰀔1−z

=
󰀓
Tr(X

1
2σ

z−α
2z ρ

α
2z ρ

α
2zσ

z−α
2z X

1
2 )
󰀔z󰀓

Tr(σ
1−z
2z X− 1

2X− 1
2σ

1−z
2z )

z
1−z

󰀔1−z

=
󰀓
Tr(σ

z−α
2z ρ

α
z σ

z−α
z X)

󰀔z󰀓
Tr(σ

1−z
2z X−1σ

1−z
2z )

z
1−z

󰀔1−z

=
󰀓
Tr(σ

z−α
2z ρ

α
z σ

z−α
z X)

󰀔z󰀓
Tr(σ

z−1
2z Xσ

z−1
2z )

z
z−1

󰀔1−z

.
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From the proof of (i), functions Tr(σ
z−α
2z ρ

α
z σ

z−α
z X) and Tr(σ

z−1
2z Xσ

z−1
2z )

z
z−1 attain minimum at

X = X0 = σ
1−z
2z (σ

1−α
2z ρ

α
z σ

1−α
2z )z−1σ

1−z
2z . We also have

󰀓
Tr(σ

z−α
2z ρ

α
z σ

z−α
2z X0)

󰀔z

= fα,z(ρ, σ),

and
󰁫
Tr

󰀓
σ

z−1
2z X0σ

z−1
2z

󰀔 z
z−1

󰁬1−z

= fα,z(ρ, σ)
1−z.

Thus, (ii) is proven.

3.4 The α-z-fidelity between unitary orbits

In [85], Zhang and then in [82], Yan and their co-authors used the fidelity and the α-fidelity

to determine the distance between two quantum orbits. In this section, adapting their techniques

we use quantum α-z-fidelity to measure the distance between two quantum orbits. We also show

that the set of these distances is a close interval in R+.

Definition 3.4.1 (([85])). Let U(H) be the set of n×n unitary matrices, and Dn the set of density

matrices. For ρ ∈ Dn, its unitary orbit is defined as

Uρ = {UρU∗ : U ∈ U(H)}.

In this section we are going to obtain the maximum and minimum distance between or-

bits of two state ρ and σ in Dn via the quantum α-z-fidelity. Note that fα,z(V ρV ∗,WσW ∗) =

fα,z(ρ, UσU∗), where U = V ∗W. Thus, the problems are reduced to computing max
U∈U(H)

fα,z(ρ, UσU∗)

and min
U∈U(H)

fα,z(ρ, UσU∗).

For the proof of the folowing theorem, let us recall the Golden Thomson inequality [9].

Theorem 3.4.1. For two Hermitian operators A,B ∈ L(H), we have

Tr[exp(A+B)] ≤ Tr[exp(A) exp(B)].
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Furthermore, the equality holds if and only if A and B commute.

Theorem 3.4.2. Let ρ and σ ∈ Dn, the α-z-fidelity fα,z(ρ, σ) = Tr
󰀓
σ

1−α
2z ρ

α
z σ

1−α
2z

󰀔z

between

the unitary orbits Uρ and Uσ satifies

max
U∈U(H)

fα,z(ρ, UσU∗) =
n󰁛

i=1

λ↓
i (ρ)

αλ↓
i (σ)

1−α,

and

min
U∈U(H)

fα,z(ρ, UσU∗) =
n󰁛

i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α,

where λ(ρ) = (λ1, . . . ,λn) are the eigenvalues of ρ and λ↓(ρ) (resp. λ↑(ρ)
󰀄

is a rearrangement

of λ(ρ) in decreasing order (resp. increasing order).

Proof. For two Hermitian matrices A and B, there exist unitary matrices U and V such that A =

UΛ(A)U∗ and B = V Λ(B)V ∗, where Λ(A) and Λ(B) are denote the diagonal matrices whose

entries are the eigenvalues of A and B, respectively [9]. In addition, for a density matrix ρ, there

is an orthonormal basis {|i〉 : i = 1, 2, ..., n} such that ρ =
n󰁛

i=1

λi(ρ)|i〉〈i| [71]. Therefore, the

eigenvectors of two density matrices can be connected via a unitary matrix, we can assume that

ρ and σ have the following spectral decompositions

ρ =
n󰁛

i=1

λ↓
i (ρ)|i〉〈i| and σ =

n󰁛

i=1

λ↓
i (σ)W0|i〉〈i|W ∗

0 ,

where λ↓
i (p),λ

↓
i (σ) > 0 for all i = 1, 2, ..., n and W0 is a unitary matrix.

We know that for any two n×n Hermitian matrices A and B, there exist two unitary matrices

U1 and U2 such that [72]

exp

󰀕
A

2

󰀖
exp(B) exp

󰀕
A

2

󰀖
= exp (U1AU

∗
1 + U2BU∗

2 ) .
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Let A =
1− α

z
U ln σU∗ and B =

α

z
ln ρ, we have

exp

󰀕
A

2

󰀖
exp(B) exp

󰀕
A

2

󰀖
= Uσ

1−α
2z U∗ρ

α
z Uσ

1−α
2z U∗

= exp
󰀓1− α

z
U1U ln σU∗

1U
∗ +

α

z
U2 ln σU

∗
2

󰀔
.

Therefore, for 0 < α < 1, we have

fα,z(ρ, σ) = Tr
󰀓
Uσ

1−α
2z U∗ρ

α
z Uσ

1−α
2z U∗

󰀔z

= Tr

󰀣
exp

󰀓1− α

z
U1U ln σU∗U∗

1 +
α

z
U2 ln σU

∗
2

󰀔󰀤z

= Tr

󰀣
exp

󰀓
αU2 ln σU

∗
2 + (1− α)U1U ln σU∗U∗

1

󰀔󰀤

= Tr
󰀓
exp(α ln ρ+ (1− α)Ũ ln σŨ∗)

󰀔
,

where Ũ = U∗
2U1U. By the Golden-Thomson inequality we have

Tr
󰀓
exp(α ln ρ+ (1− α)Ũ ln σŨ∗)

󰀔
≤ Tr

󰀓
ραŨσ1−αŨ∗

󰀔
.

Using the Araki-Lieb-Thirring inequality we have

Tr
󰀓
ραŨσ1−αŨ∗

󰀔
= Tr

󰀓
Ũσ

1−α
2 Ũ∗ραŨσ

1−α
2 Ũ∗

󰀔
≤ Tr

󰀓
σ

1−α
2z Ũ∗ρ

α
z σ

1−α
2z Ũ∗

󰀔z

= fα,z(ρ, σŨ
∗).

Since the unitary group U(H) is compact, there exists some unitary U0 ∈ U(H) such that the

maximum is attained, that is

max
U∈U(H)

fα,z(ρ, UσU∗) = fα,z(σ, U0σU
∗
0 ) = Tr

󰀓
exp(α ln ρ+ (1− α)Ũ0 ln σŨ

∗
0 )
󰀔

= Tr
󰀓
ραŨσ1−αŨ∗

󰀔
.

By the condition of equality of the Golden-Thomson’s inequality we must have [ρα, Ũ0σ
1−αŨ∗

0 ] =

0. Since [ρα,W ∗
0 σ

1−αW0] = 0, it follows that Ũ0 = W ∗. As a result, if [ρ,W ∗
0 σW0] = 0 and
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0 < α < z < 1, then

max
U∈U(H)

fα,z(ρ, UσU∗) = fα,z(ρ,W
∗
0 σW0) =

n󰁛

i=1

λ↓
i (ρ)

αλ↓
i (σ)

1−α.

On the other hand, we have

fα,z(ρ, UσU∗) ≥ Tr
󰀓
ραUσ1−αU∗

󰀔
≥

n󰁛

i=1

λ↓
i (ρ

α)λ↑
i (Uσ1−αU∗)

=
n󰁛

i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α,

where the first inequality holds by Araki-Lieb-Thirring’s inequality and the second inequality

holds because for any two positive definite matrices A and B we have [9]

n󰁛

i=1

λ↓
i (A).λ

↑
i (B) 󰃑 Tr(AB) 󰃑

n󰁛

i=1

λ↓
i (A).λ

↓
i (B).

Therefore,

min
U∈U(H)

fα,z(ρ, UσU∗) ≥
n󰁛

i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α.

The equality occurs when UW0|i〉 = |n− i+ 1〉.

Theorem 3.4.3. For 0 ≤ α ≤ z ≤ 1,

{fα,z(ρ, UσU∗) : U ∈ U(H)} =
󰁫 n󰁛

i=1

λ↓
i (ρ)

αλ↑
i (σ)

1−α,

n󰁛

i=1

λ↓
i (ρ)

αλ↓
i (σ)

1−α
󰁬
. (3.4.25)

Proof. Recall that the Stone theorem [21] states that any unitary matrix U can be parameterized

as U = exp(tK) for some skew Hermitian matrix K and t ∈ R. Note that

Tr
󰀓
σ

1−α
2z ρ

α
z σ

1−α
z

󰀔z

= Tr
󰀓
ρ

α
2zσ

1−α
z ρ

α
2z

󰀔z

.

78



By Theorem 3.4.2, there exists t ∈ R such that function

g(t) = fα,z(ρ, UtσU
∗
t ) = Tr

󰀓
ρ

α
2zUtσ

1−α
z U∗

t ρ
α
2z

󰀔z

achieves maximum and minimum. In order to prove (3.4.25) we need to verify that the function

g(t) is continuous in t.

The function Ut = exp (tK) is continuous in t with respect to the Schatten 1-norm, this

means that for all ε > 0, there exists δ > 0 such that 󰀂Ut+δ−Ut󰀂1 <
ε

2
. Let θt = ρ

α
2zUtσ

1−α
z U∗

t ρ
α
2z ,

then we have

󰀂θt+δ − θt󰀂1 = 󰀂ρ α
2zUt+δσ

1−α
z U∗

t+δρ
α
2z − ρ

α
2zUtσ

1−α
z U∗

t ρ
α
2z 󰀂1

= 󰀂ρ α
2z [(Ut+δ − Ut)σ

1−α
z U∗

t+δ + Utσ
1−α
z (U∗

t+δ − U∗
t )]ρ

α
2z 󰀂1

≤ 󰀂ρ α
2z 󰀂2∞.󰀂(Ut+δ − Ut)σ

1−α
z U∗

t+δ + Utσ
1−α
z (U∗

t+δ − U∗
t )󰀂1

≤ 󰀂ρ α
2z 󰀂2∞.(󰀂Ut+δ − Ut󰀂1.󰀂σ

1−α
z U∗

t+δ󰀂∞ + 󰀂Utσ
1−α
z 󰀂∞.󰀂U∗

t+δ − U∗
t 󰀂1)

≤ 󰀂ρ
1−α
2z 󰀂2∞.󰀂σ

1−α
z 󰀂∞.(󰀂Ut+δ − Ut)󰀂1 + 󰀂U∗

t+δ − U∗
t 󰀂1)

≤ ε,

where the first and the second inequalities hold since for any matrices A,B and C of the same

order and for any 1 ≤ p ≤ ∞, we have [80]

󰀂ABC󰀂p ≤ 󰀂A󰀂∞󰀂B󰀂p󰀂C󰀂∞.

According to the integral representation of operator monotone function az (see, for example,

[31]), for 0 < z < 1 and a > 0 we have

θzt =
sin(zπ)

π

󰁝 ∞

0

xz
󰀓1
x
− 1

x+ θt

󰀔
dx.
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Therefore,

󰀂θzt+δ − θzt 󰀂1 =
󰀐󰀐󰀐
sin(zπ)

π

󰁝 ∞

0

xz
󰀓
(x+ θt)

−1 − (x+ θt+δ)
−1
󰀔
dx

󰀐󰀐󰀐
1

=
󰀐󰀐󰀐
sin(zπ)

π

󰁝 ∞

0

xz(x+ θt)
−1(θt+δ − θt)(x+ θt+δ)

−1dx
󰀐󰀐󰀐
1

≤ 1

π

󰁝 ∞

0

xz󰀂(x+ θt)
−1󰀂∞.󰀂θt+δ − θt󰀂1.󰀂(x+ θt+δ)

−1󰀂∞dx.

Note that for the positive definite matrix A we have 󰀂A󰀂∞ = λ↓
1(A). Then, for x > 0 we have

󰀂(x+ θt)
−1󰀂∞ = (x+ λ↓

n(θt))
−1,

and

󰀂(x+ θt+δ)
−1󰀂∞ = (x+ λ↓

n(θt+δ))
−1.

Consequently,

󰀂(x+ θt)
−1󰀂∞.󰀂(x+ θt+δ)

−1󰀂∞ ≤ (x+ c)−2,

where c = min{λ↓
n(θt),λ

↓
n(θt+δ)}. Therefore,

󰀂θzt+δ − θzt 󰀂1 ≤ 1

π
󰀂θt+δ − θt󰀂1

󰁝 ∞

0

xz

(x+ c)2
dx

≤ ε

π

󰁝 ∞

c

(y − c)z

y2
dy (where y = x+ c)

≤ ε

π

󰁝 ∞

c

dy

y2−z

= kε,

where k =
1

π

󰁝 ∞

c

yz−2dy < ∞. Finally, we have

|g(t+ δ)− g(t)| = |Tr(θzt+δ)− Tr(θzt )| ≤ 󰀂θzt+δ − θzt 󰀂1 ≤ kε.
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Finally, we have

|g(t+ δ)− g(t)| = |Tr(θzt+δ)− Tr(θzt )| ≤ 󰀂θzt+δ − θzt 󰀂1 ≤ kε.

This means, the function g(t) is continuous in t. By the Intermediate Value Theorem, we have

(3.4.25).

In this chapter, we introduce a new quantum divergence called the α-z-Bures Wasserstein

distance, which is an extension with two parameters of the Bures distance. Then we investigate

its properties. In particular, we solve the least square problem with respect to this divergence

and study its solution. In the next chapter, we introduce a new weighted spectral geometric mean

denoted by Ft(A,B) and study the properties of this quantity. Additionally, we provide some

comparisons between Ft(A,B) and A ⋄t B, which is the solution to the least square problem

with respect to the Bures Wasserstein distance.
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Chapter 4

A new weighted spectral geometric mean

It is well-known [10] that the geometric mean A󰂒B is the midpoint of the geodesic

A󰂒tB = A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1],

joining A and B under the Riemannian metric δR(A,B) = 󰀂 log(A−1/2BA−1/2)󰀂F , where 󰀂 ·󰀂F
denotes the Frobenius norm [11].

The spectral geometric mean of A,B ∈ Pn was introduced by Fiedler and Pták in 1997 [37],

and one of its formulations is

A󰂑B := (A−1󰂒B)1/2A(A−1󰂒B)1/2. (4.0.1)

It is called the spectral geometric mean because (A󰂑B)2 is similar to AB and that the eigenvalues

of their spectral mean are the positive square roots of the corresponding eigenvalues of AB [37,

Theorem 3.2].

Kim and Lee [52] defined the weighted spectral mean:

A󰂑tB :=
󰀃
A−1󰂒B

󰀄t
A
󰀃
A−1󰂒B

󰀄t
, t ∈ [0, 1]. (4.0.2)

It is obvious that A󰂑tB is a curve joining A and B. They studied the relative operator entropy
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related to the spectral geometric mean and several properties similar to those of the relative

entropy of Tsallis operator defined via the matrix geometric mean. Recently, Gan, Liu, and Tam

[41] and Gan and Tam [40] studied A󰂑tB and obtained some nice properties.

Note that in (4.0.2) the geometric mean A−1󰂒B is a main component of the weighted spectral

mean A󰂑tB while the middle term is A, independent of t.

Following that sequence of events, in this chapter we define a new weighted mean, called

F-mean.

The results of this chapter are taken from [33].

4.1 A new weighted spectral geometric mean and its basic

properties

Definition 4.1.1. Let A,B ∈ Pn. Define

Ft(A,B) := (A−1󰂒tB)1/2A2−2t(A−1󰂒tB)1/2, t ∈ [0, 1]. (4.1.3)

It is obvious that F0(A,B) = A and F1(A,B) = B, and hence Ft(A,B) is a curve joining A

and B. For t = 1
2
, F 1

2
(A,B) is the spectral geometric mean (4.0.1). We call Ft(A,B) weighted

F-mean and it is different from (4.0.2).

From the Riccati equation, it is obvious that A󰂒X = B if and only if X = BA−1B. There-

fore, Ft(A,B) is the unique positive definite solution X to

A2(t−1)󰂒X = (A−1󰂒tB)1/2.

Let’s recall some known properties of the weighted geometric mean [57] .

Lemma 4.1.1. Let A,B,C,D ∈ Pn and t ∈ [0, 1]. We have

1. A󰂒tB = A1−tBt if A and B commute.

83



2. (aA)󰂒t(bB) = a1−tbt(A󰂒tB) for a, b > 0.

3. A󰂒tB = B󰂒1−tA.

4. (A󰂒tB)−1 = A−1󰂒tB
−1.

5. U∗(A󰂒tB)U = (U∗AU)󰂒t(U
∗BU) for any U ∈ U(n).

6. (Löwner-Heinz) A󰂒tB ≤ C󰂒tD if A ≤ C, B ≤ D.

7. (λA+ (1− λ)B)󰂒t(λC + (1− λ)D) ≥ λ(A󰂒tC) + (1− λ)(B󰂒tD), for λ ∈ [0, 1].

8. ((1− t)A−1 + tB−1)−1 ≤ A󰂒tB ≤ (1− t)A+ tB.

The following proposition lists some basic properties of Ft(A,B). Some properties are

similar to those of weighted geometric mean [57], and are not hard to prove. Proofs are presented

here for the sake of completeness.

Proposition 4.1.1. Let A,B ∈ Pn. The following properties hold for all t ∈ [0, 1].

1. Ft(A,B) = A1−tBt if A and B commute.

2. Ft(aA, bB) = a1−tbtFt(A,B) for a, b > 0.

3. U∗Ft(A,B)U = Ft(U
∗AU,U∗BU) for U ∈ U(n).

4. F−1
t (A,B) = Ft(A

−1, B−1).

5. detFt(A,B) = (detA)1−t(detB)t.

6. 2((1− t)A+ tB−1)−1/2 −A2(t−1) ≤ Ft(A,B) ≤ [2((1− t)A−1 + tB)−1/2 −A−2(t−1)]−1.

Proof. (1) Since A and B commute, so are A−1 and B. Thus A−1󰂒tB = (A−1)1−tBt and we

have

Ft(A,B) = (A−1󰂒tB)1/2A2−2t(A−1󰂒tB)1/2 = (A−1+tBt)1/2A2−2t(A−1+tBt)1/2 = A1−tBt.

84



(2) For any a, b > 0, we have (aA)󰂒t(bB) = a1−tbt(A󰂒tB). Consequently,

Ft(aA, bB) =
󰀓
(aA)−1󰂒t(bB)

󰀔1/2

(aA)2−2t
󰀓
(aA)−1󰂒t(bB)

󰀔1/2

= a1−tbt(A−1󰂒tB)1/2A2−2t(A−1󰂒tB)1/2

= a1−tbtFt(A,B).

(3) Note that U∗(A󰂒tB)1/2U = (U∗(A󰂒tB)U)1/2 and U∗A2−2tU = (U∗AU)2−2t for any

U ∈ U(n). Then

U∗Ft(A,B)U = U∗(A󰂒tB)1/2A2−2t(A󰂒tB)1/2U

= U∗(A󰂒tB)1/2UU∗A2−2tUU∗(A󰂒tB)1/2U

= ((U∗ (A󰂒tB)U)1/2 (U∗AU)2−2t (U∗ (A󰂒tB)U)1/2

= Ft(U
∗AU,U∗BU),

where the last equality follows from U∗(A󰂒tB)U = (U∗AU)󰂒t(U
∗BU).

(4) Applying (A󰂒tB)−1 = A−1󰂒tB
−1, we obtain

Ft(A,B)−1 =
󰁫󰀃
A−1󰂒tB

󰀄1/2
A2−2t

󰀃
A−1󰂒tB

󰀄1/2󰁬−1

=
󰀃
A−1󰂒tB

󰀄−1/2
A2t−2

󰀃
A−1󰂒tB

󰀄−1/2

=
󰀃
A󰂒tB

−1
󰀄1/2

A2t−2
󰀃
A󰂒tB

−1
󰀄1/2

= Ft(A
−1, B−1).

(5) Since det(AB) = detA detB, we obtain

detFt(A,B) = det
󰀃
A−1󰂒tB

󰀄
det

󰀃
A2−2t

󰀄
= (detA)t−1(detB)t(detA)2−2t = (detA)1−t(detB)t.

(6) Let X = Ft(A,B). By the Arithmetic-Geometric-Harmonic inequality and the operator
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monotonicity of the function X 󰀁→ X t when t ∈ [0, 1], we have

󰀣
A−2(t−1) +X−1

2

󰀤−1

≤ A2(t−1)󰂒X = (A−1󰂒tB)1/2 ≤
󰀓
(1− t)A−1 + tB

󰀔1/2

. (4.1.4)

Then we have
A−2(t−1) +X−1

2
≥

󰀓
(1− t)A−1 + tB

󰀔−1/2

.

Hence

X−1 ≥ 2
󰀓
(1− t)A−1 + tB

󰀔−1/2

− A−2(t−1).

Consequently,

X ≤
󰀥
2
󰀓
(1− t)A−1 + tB

󰀔−1/2

− A−2(t−1)

󰀦−1

.

Since Ft(A,B) = (Ft(A
−1, B−1))−1, we obtain the first inequality.

Using the second inequality in (4.1.4) and similar arguments, one can prove the second

inequality.

Remark 4.1.1. An analog of Lemma 4.1.1(3) for Ft(A,B) is not true, i.e., the equality Ft(A,B) =

F1−t(B,A) does not hold. Indeed, from the last identity we have

(A−1󰂒tB)1/2A2−2t(A−1󰂒tB)1/2 = (A−1󰂒tB)−1/2B2t(A−1󰂒tB)−1/2,

or equivalently,

B2t = (A−1󰂒tB)A2−2t(A−1󰂒tB).

According to the Riccati equation, it implies that

A−1󰂒tB = B2t󰂒A2t−2

which is not true.
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4.2 The Lie-Trotter formula and weak log-majorization

Let B(H) be the Banach space of bounded operators on Hilbert space H and P (H) be the

open convex cone of positive definite operators. A straightforward outcome of calculus applied

to mappings on operators and operator-valued functions is the possibility to expand the classical

Lie-Trotter formula in the following manner.

Proposition 4.2.1 ([1]). For any differentiable curve γ : (−ε, ε) → Pn with γ(0) = I ,

eγ
′(0) = lim

t→0
γ1/t(t) = lim

n→∞
γn(1/n).

Indeed, the exponential function e : B(H ) → P (H ) and the logarithm function log :

P (H ) → B(H ) are both well-defined and diffeomorphic. The derivative of the exponential

function at the origin 0 ∈ B(H ) is the identity map on B(H ). Consequently, the derivative

of its inverse function log at the identity operator I ∈ P (H ) is the identity map on B(H ).

Therefore

γ′(0) = (log ◦γ)′(0) = lim
t→0

log(γ(t))− log(γ(0))

t
= lim

t→0

log(γ(t))

t

= lim
t→0

log
󰀃
γ(t)1/t

󰀄
= lim

n→∞
log (γ(1/n)n)

.

Notice that for X, Y ∈ Hn and α ∈ [0, 1], the following curves are smooth and pass through

the identity matrix I at t = 0:

γ1(t) = et(1−α)X/2etαY et(1−α)X/2,

γ2(t) = (1− α)etX + αetY ,

γ3(t) = ((1− α)e−tX + αe−tY )−1,

γ4(t) = etX󰂒αe
tY ,

γ5(t) = etX󰂑αe
tY .
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Applying Proposition 4.2.1 one obtains the following Lie-Trotter formulas:

e(1−α)X+αY = lim
n→∞

(et(1−α)X/2netαY/net(1−α)X/2n)n

= lim
n→∞

((1− α)etX/n + αetY/n)n

= lim
n→∞

((1− α)e−tX/n + αe−tY/n)−n

= lim
n→∞

(etX/n󰂒αe
tY/n)n

= lim
n→∞

(etX/n󰂑αe
tY/n)n.

In next theorem, we show the Lie-Trotter formula for Ft, namely,

lim
p→0

F1/p
t (epA, epB) = e(1−t)A+tB,

when A,B ∈ Hn and t ∈ [0, 1].

Theorem 4.2.1. Let A,B ∈ Hn and t ∈ [0, 1]. Then

lim
p→0

F1/p
t (epA, epB) = e(1−t)A+tB.

Proof. Since F−1
t (A,B) = Ft(A

−1, B−1) we have

lim
p→0−

F−1/p
t

󰀃
epA, epB

󰀄
= lim

p→0−
F−1/p

t

󰀃
e−pA, e−pB

󰀄
= lim

p→0+
F1/p

t

󰀃
epA, epB

󰀄
.

So we only need to prove

lim
p→0+

Ft(e
pA, epB)1/p = e(1−t)A+tB.

For p ∈ (0, 1) we may express p = 1
m+s

, where m ∈ N, and s ∈ (0, 1). Set

X(p) := Ft(e
pA, epB), Y (p) := ep[(1−t)A+tB].
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We have

󰀂Ft(e
pA, epB)1/p − e(1−t)A+tB󰀂

= 󰀂X(p)1/p − Y (p)1/p󰀂

≤ 󰀂X(p)1/p −X(p)m󰀂+ 󰀂X(p)m − Y (p)m󰀂+ 󰀂Y (p)m − Y (p)1/p󰀂. (4.2.5)

By [62, Theorem 1.1],

epA󰂒te
pB ≺log e

p[(1−t)A+tB]

so we have

󰀂epA󰂒tepB󰀂 ≤ 󰀂Y (p)󰀂 ≤ ep[(1−t)󰀂A󰀂+t󰀂B󰀂].

Therefore,

󰀂X(p)󰀂 = 󰀂
󰀃
e−pA󰂒te

pB
󰀄 1

2 ep(2−2t)A(e−pA󰂒te
pB)

1
2󰀂

≤ 󰀂e−pA󰂒te
pB󰀂 1

2󰀂ep(2−2t)A󰀂 󰀂e−pA󰂒te
pB󰀂 1

2

≤ e
p
2
[(1−t)󰀂A󰀂+t󰀂B󰀂]ep(2−2t)󰀂A󰀂e

p
2
[(1−t)󰀂A󰀂+t󰀂B󰀂]

= ep[(3−3t)󰀂A󰀂+2t󰀂B󰀂].

As pm ≤ 1, we have 󰀂X(p)󰀂m ≤ epm[(3−3t)󰀂A󰀂+2t󰀂B󰀂] ≤ e(3−3t)󰀂A󰀂+2t󰀂B󰀂 < ∞. Consequently,

the first term in (4.2.5)

󰀂X(p)1/p −X(p)m󰀂 = 󰀂X(p)m+s −X(p)m󰀂 ≤ 󰀂X(p)󰀂m󰀂X(p)s − I󰀂 → 0 as p → 0+,

since X(p) → I as p → 0+ by (4.1.3) and s ∈ (0, 1). Similarly, the third term in (4.2.5)

󰀂Y (p)m − Y (p)1/p󰀂 = 󰀂Y (p)m − Y (p)m+s󰀂 ≤ 󰀂Y (p)󰀂m󰀂I − Y (p)s󰀂 → 0 as p → 0+
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Now the second term in (4.2.5)

󰀂X(p)m − Y (p)m󰀂 = 󰀂
m−1󰁛

j=0

X(p)m−1−j(X(p)− Y (p))Y (p)j󰀂 ≤ mMm−1󰀂X(p)− Y (p)󰀂,

where M := max{󰀂X(p)󰀂, 󰀂Y (p)󰀂}. As p(m− 1) ≤ 1, we have

Mm−1 ≤ max
󰀋
ep(m−1)[(3−3t)󰀂A󰀂+2t󰀂B󰀂, ep(m−1)[(1−t)󰀂A󰀂+t󰀂B󰀂]󰀌

≤ max
󰀋
e(3−3t)󰀂A󰀂+2t󰀂B󰀂, e(1−t)󰀂A󰀂+t󰀂B󰀂󰀌

< ∞.

Using the power series expansion of the matrix exponential eA =
󰁓∞

k=0
Ak

k!
, we have

e−pA󰂒te
pB = e

−pA
2

󰀓
e

pA
2 epBe

pA
2

󰀔t

e
−pA
2

=
∞󰁛

k=0

1

k!

󰀕
−pA

2

󰀖k
󰀥 ∞󰁛

k=0

1

k!

󰀕
pA

2

󰀖k ∞󰁛

k=0

(pB)k

k!

∞󰁛

k=0

1

k!

󰀕
pA

2

󰀖k
󰀦 ∞󰁛

k=0

1

k!

󰀕
−pA

2

󰀖k

=

󰀕
I − pA

2
+ o(p)

󰀖󰀗󰀕
I +

pA

2
+ o(p)

󰀖
(I + pB + o(p))

󰀕
I +

pA

2
+ o(p)

󰀖󰀘t

.

󰀕
I − pA

2
+ o(p)

󰀖

=

󰀕
I − pA

2
+ o(p)

󰀖
[I + p(A+B) + o(p)]t

󰀕
I − pA

2
+ o(p)

󰀖

= I + p[−(1− t)A+ tB] + o(p)

and

ep(2−2t)A =
∞󰁛

k=0

1

k!
(p(2− 2t)A)k = I + p(2− 2t)A+ o(p).
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Hence

X(p) =
󰀃
e−pA󰂒te

pA
󰀄 1

2 ep(2−2t)A
󰀃
e−pA󰂒te

pB
󰀄 1

2

= [I + p(−(1− t)A+ tB) + o(p)]
1
2 [I + p(2− 2t)A+ o(p)] [I + p(−(1− t)A+ tB)]

1

2

=
󰁫
I +

p

2
(−(1− t)A+ tB) + o(p)

󰁬
[I + p(2− 2t)A+ o(p)]

󰁫
I +

p

2
(−(1− t)A+ tB) + o(p)

󰁬

= I + p((1− t)A+ tB) + o(p).

As Y (p) := ep[(1−t)A+tB] = I + p((1 − t)A + tB) + o(p), we have 󰀂X(p) − Y (p)󰀂 ≤ cp2 for

some constant c. Then

󰀂X(p)m − Y (p)m󰀂 ≤ mMm−1cp2 ≤ m

(m+ s)
Mm−1cp → 0 as p → 0+,

since Mm−1 is bounded. Thus all three terms in (4.2.5) converge to 0 as p → 0+ and hence the

proof is completed.

Theorem 4.2.2. Let (α1, ...,αm−1) ∈ Rm−1, and X1, X2, ..., Xm ∈ Hn. The curve

γ(t) := Fαm−1

󰀣
etXm ,Fαm−2

󰀓
etXm−1 ,Fαm−3(...Fα1(e

tX2 , etX1)...
󰀔󰀤

is a differentiable curve with γ(0) = I and

γ′(0) =
m󰁛

k=1

m󰁜

i=k

αi (1− αk−1)Xk,

where α0 = 0 and αm = 1. In particular, if αk =
k

k + 1
, for k = 1, 2, ...,m − 1 then γ′(0) =

1

m

m󰁛

k=1

Xk.
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Proof. Let

β(t) := Fα1

󰀓
etX2 , etX1

󰀔
=

󰀓
e−tX2󰂒α1e

tX1

󰀔 1
2
et(2−2α1)X2

󰀓
e−tX2󰂒α1e

tX1

󰀔 1
2

= ϕ(t)
1
2
et(2−2α1)X2ϕ(t)

1
2 ,

where ϕ(t) = e−tX2󰂒α1e
tX1 = e−

tX2
2

󰀓
e

tX2
2 etX1e

tX2
2

󰀔α1

e−
tX2
2 . We have

d

dt
ϕ(t)

= −X2

2
e−

tX2
2

󰀓
e

tX2
2 etX1e

tX2
2

󰀔α1

e−
tX2
2 − e−

tX2
2

󰀓
e

tX2
2 etX1e

tX2
2

󰀔α1

e−
tX2
2
X2

2

+α1e
− tX2

2

󰀓
e

tX2
2 etX1e

tX2
2

󰀔α1−1 d

dt

󰀓
e

tX2
2 etX1e

tX2
2

󰀔
e−

tX2
2

= −X2

2
e−

tX2
2

󰀓
e

tX2
2 etX1e

tX2
2

󰀔α1

e−
tX2
2 − e−

tX2
2

󰀓
e

tX2
2 etX1e

tX2
2

󰀔α1

e−
tX2
2
X2

2

+α1e
− tX2

2

󰀓
e

tX2
2 etX1e

tX2
2

󰀔α1−1󰀓X2

2
e

tX2
2 etX1e

tX2
2 + e

tX2
2 etX1e

tX2
2
X2

2
+ e

tX2
2 etX1X1e

tX2
2

󰀔
e−

tX2
2 .

Therefore
d

dt
ϕ(t)

󰀏󰀏󰀏󰀏
t=0

= −X2 + α1(X2 +X1) = (α1 − 1)X2 + α1X1.

On the other hand,

d

dt
β(t) =

1

2
ϕ(t)−

1
2
d

dt
ϕ(t)et(2−2α1)X2ϕ(t)

1
2 +

1

2
ϕ(t)

1
2 et(2−2α1)X2ϕ(t)−

1
2
d

dt
ϕ(t)

+(2− 2α1)ϕ(t)
1
2 et(2−2α1)X2X2ϕ(t)

1
2 .

Thus,

d

dt
β(t)

󰀏󰀏󰀏󰀏
t=0

= (α1 − 1)X2 + α1X1 + (2− 2α1)X2 = (1− α1)X2 + α1X1.

Set

ξ(t) := Fαm

󰀓
etXm+1 , γ(t)

󰀔
= L(t)

1
2 et(2−2αm)Xm+1L(t)

1
2 ,
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where L(t) = e−tXm+1󰂒αmγ(t). Since

d

dt
ξ(t) =

1

2
L(t)−

1
2
d

dt
L(t)et(2−2αm)Xm+1L(t)

1
2 +

1

2
L(t)

1
2 et(2−2αm)Xm+1L(t)−

1
2
d

dt
L(t)

+(2− 2αm)L(t)
1
2 et(2−2αm)Xm+1Xm+1L(t)

1
2 ,

by the previous argument, we have

d

dt
L(t)

󰀏󰀏󰀏󰀏
t=0

= −Xm+1 + αm(Xm+1 + γ′(0)).

Therefore,

d

dt
ξ(t)

󰀏󰀏󰀏󰀏
t=0

= (1− αm)Xm+1 +
m󰁛

k=1

m󰁜

i=k

αi (1− αk−1)Xk =
m+1󰁛

k=1

m+1󰁜

i=k

αi (1− αk−1)Xk,

where α0 = 0 and αm+1 = 1.

The Wasserstein distance or Bures distance of A,B ∈ Pm is the Riemannian metric given

by [13, 42]

db(A,B) =

󰀗
tr

󰀕
A+B

2

󰀖
− tr

󰀃
A1/2BA1/2

󰀄1/2
󰀘1/2

.

The Wasserstein mean of A1, A2, ..., Am belonging to Pn is the solution to the least squares

mean problem for the Wasserstein distance, which is defined as follows:

Ω (ω;A1, . . . , Am) = argmin
X∈Pn

m󰁛

j=1

wjd
2
b (X,Aj) ,

Here, ω is a positive probability vector represented as ω = (w1, . . . , wm). Specifically, when

there are two distributions (i.e., when n = 2), the Wasserstein mean of A and B with respect to

ω = (1− t, t) where t ∈ [0, 1] is exactly

A ⋄t B = A−1/2
󰁫
(1− t)A+ t

󰀃
A1/2BA1/2

󰀄1/2󰁬2
A−1/2.
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Now we compare the weak log-majorization between the F-mean and the Wasserstein mean.

Theorem 4.2.3. Let A,B ∈ Pn and t ∈ [0, 1].

(i) If 0 ≤ t ≤ 1
2

then

Ft(A,B) ≺w log A ⋄t B;

(ii) If 1
2
≤ t ≤ 1 then

F1−t(B,A) ≺w log A ⋄t B.

Proof. By using the technique of the k-th antisymmetric tensor power, we only need to prove

that A⋄tB ≤ I implies Ft(A,B) ≤ I . This is equivalent to proving that λ1(A⋄tB) ≤ 1, which

in turn implies λ1(Ft(A,B)) ≤ 1, when 0 ≤ t ≤ 1
2
. The same reasoning applies to the second

inequality.

(i) Let 0 ≤ t ≤ 1
2
, set C = A−1󰂒tB = A−1/2(A1/2BA1/2)tA−1/2. Consequently,

(A1/2BA1/2)1/2 = (A1/2CA1/2)1/2t.

Assuming that A ⋄t B ≤ I . This is equivalent to

󰁫
(1− t)A+ t

󰀃
A1/2BA1/2

󰀄1/2󰁬2 ≤ A,

since map x 󰀁→ x1/2 is operator monotone, then we have

(1− t)A+ t(A1/2BA1/2)1/2 ≤ A1/2

⇔ (1− t)A+ t(A1/2CA1/2)1/2t ≤ A1/2.

This leads to

(A1/2CA1/2)1/2t ≤
󰀓
1− 1

t

󰀔
A+

1

t
A1/2.
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Since 2t ∈ [0, 1], then we have

A1/2CA1/2 ≤
󰀓
(1− 1

t
)A+

1

t
A1/2

󰀔2t

.

Thus,

C ≤ A−1/2
󰀓
(1− 1

t
)A+

1

t
A1/2

󰀔2t

A−1/2.

Now,

λ1(Ft(A,B)) = λ1(C
1/2A2−2tC1/2)

= λ1(A
1−tCA1−t)

≤ λ1(A
1/2−t((1− 1

t
)A+

1

t
A1/2)2tA1/2−t)

= λ1

󰀓
((1− 1

t
)A+

1

t
A1/2)2tA1−2t

󰀔
.

Since A > 0, there exists a unitary matrix U and a diagonal matrix D = diag(λ1, ...,λn)

such that A = UDU∗. Therefore

󰀓
(1− 1

t
)A+

1

t
A1/2

󰀔2t

A1−2t = U
󰀓
(1− 1

t
)D +

1

t
D1/2

󰀔2t

D1−2tU∗

= UEU∗,

where E = diag((1− 1
t
)λ1 +

1
t
λ
1/2
1 )2tλ1−2t

1 , ..., ((1− 1
t
)λn +

1
t
λ
1/2
1 )2tλ1−2t

n ).

Now we prove

󰀓
(1− 1

t
)x+

1

t
x1/2

󰀔2t

x1−2t =
󰀓
(1− 1

t
)x1/2t +

1

t
x(1−t)/2t

󰀔2t

≤ 1,
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where x > 0 and 0 < t ≤ 1

2
. This is equivalent to

f(x) :=
󰀓t− 1

t
x1/2t +

1

t
x(1−t)/2t

󰀔
≤ 1,

where x > 0 and 0 < t ≤ 1

2
. We have

f ′(x) =
t− 1

2t2
x(1−2t)/2t +

1− t

2t2
x(1−3t)/2t

=
t− 1

2t2
x(1−3t)/2t(x1/2 − 1).

Thus, f ′(x) = 0 if only if x = 1. Hence, f(x) attains its maximum at f(1) = 1, and

f(x) ≤ 1, for all 0 ≤ x ≤ 1
2

and x > 0. Therefore, λ1(Ft(A,B)) ≤ 1, which implies

Ft(A,B) ≤ I.

(ii) Let 1
2

≤ t ≤ 1, set C = B−1󰂒1−tA = B−1/2(B1/2AB1/2)1−tB−1/2. Consequently,

B1/2CB1/2 = (B1/2AB1/2)1−t. This implies (B1/2CB1/2)1/(2−2t) = (B1/2AB1/2)1/2.

Recall that,

A ⋄t B = B ⋄1−t A = B−1/2(tB + (1− t)(B1/2AB1/2)1/2)2B−1/2.

If A ⋄t B ≤ I , then we have

tB + (1− t)(B1/2AB1/2)1/2 ≤ B1/2.

This is equivalent to

(B1/2CB1/2)1/(2−2t) ≤ t

t− 1
B +

1

1− t
B1/2,
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since the map x 󰀁→ x2−2t is operator monotone when 1
2
≤ t ≤ 1. Then we have

B1/2CB1/2 ≤
󰀓 t

t− 1
B +

1

1− t
B1/2

󰀔2−2t

.

Hence,

C ≤ B−1/2
󰀓 t

t− 1
B +

1

1− t
B1/2

󰀔2−2t

B−1/2.

Now,

λ1(F1−t(B,A)) = λ1(C
1/2B2tC1/2)

= λ1(B
tCBt)

≤ λ1

󰀓
Bt−1/2(

t

t− 1
B +

1

1− t
B1/2)2−2tBt−1/2

󰀔

= λ1

󰀓
(

t

t− 1
B +

1

1− t
B1/2)2−2tB2t−1

󰀔
.

Since B > 0, there exists a unitary matrix U and a diagonal matrix D = diag(λ1, ...,λn)

such that B = UDU∗. Therefore,

󰀓 t

t− 1
B +

1

1− t
B1/2

󰀔2−2t

B2t−1 = U
󰀓 t

t− 1
D +

1

1− t
D1/2

󰀔2−2t

D2t−1U∗

= UEU∗,

where E = diag
󰀓
( t
t−1

λ1 +
1

1−t
λ
1/2
1 )2−2tλ2t−1

1 , ..., ( t
t−1

λn +
1

1−t
λ
1/2
n )2−2tλ2t−1

n

󰀔
. Now we

prove

󰀓 t

t− 1
x+

1

1− t
x1/2)2−2t = (

t

t− 1
x1(2−2t) +

1

1− t
xt/(2−2t)

󰀔2−2t

≤ 1,

where 1
2
≤ t ≤ 1 and x > 0. Let

f(x) =
t

t− 1
x1(2−2t) +

1

1− t
xt/(2−2t),
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where 1
2
≤ t ≤ 1 and x > 0. We have

f ′(x) =
t

(t− 1)(2− 2t)
x(2t−1)/(2−2t) +

t

(1− t)(2− 2t)
x(3t−2)/2−2t

=
t

(t− 1)(2− 2t)
x(2t−1)/(2−2t)(1− x−1/2) = 0.

Thus, f ′(x) = 0 if only if x = 1. Hence, f(x) attains its maximum at f(1) = 1 and

f(x) ≤ 1, for all 1
2

≤ x ≤ 1 and x > 0. Therefore, λ1(F1−t(B,A)) ≤ 1, that is

F1−t(B,A) ≤ I.

In this chapter, we introduce a new spectral geometric mean, called the F-mean. Besides

providing some basic properties of this quantity, we prove that the F-mean satisfies the Lie-

Trotter formula, and then we compare it with the solution of the least square problem with

respect to the Bures distance.
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Conclusions

This thesis obtained the following main results:

1. We introduce a new Weighted Hellinger distance, denoted as dh,α(A,B), and prove that it

acts as an interpolating metric between the Log-Euclidean and Hellinger metrics. Ad-

ditionally, we establish the equivalence between the weighted Bures-Wasserstein and

weighted Hellinger distances. Moreover, we demonstrate that both distances satisfy the

in-betweenness property. Moreover, we also show that among symmetric means, the arith-

metic mean is the only one that satisfies the in-betweenness property in the weighted

Bures-Wasserstein and weighted Hellinger distances.

2. We construct a new quantum divergence called the α-z-Bures-Wasserstein divergence and

demonstrate that this divergence satisfies the in-betweenness property and the data pro-

cessing inequality in quantum information theory. Furthermore, we solve the least squares

problem with respect to this divergence and establish that the solution to this problem cor-

responds exactly to the unique positive solution of the matrix equation

m󰁛

i=1

wiQα,z (X,Ai) = X,

where Qα,z(A,B) =
󰀓
A

1−α
2z B

α
z A

1−α
2z

󰀔z

and 0 < α ≤ z ≤ 1. Afterwards, we proceed to

study the properties of the solution to this problem and achieve several significant results.

In addition, we provide an inequality for quantum fidelity and its parameterized versions.

Then, we utilize α-z-fidelity to measure the distance between two quantum orbits.
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3. We introduce a new weighted geometric mean, called the F-mean. We establish some

properties for the F-mean and prove that it satisfies the Lie-Trotter formula, Furthermore,

we provide a comparison in weak-log majorization between the F-mean and the Wasser-

stein mean.
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Further investigation

In the future, we intend to continue the investigation in the following directions:

• Construct some new distance function based on non-Kubo-Ando means.

• Construct a new distance function between two matrices with different dimensions.

• For X, Y > 0 and 0 < t < 1, verify whether the two quantities

Φ1(X, Y ) = Tr((1− t)X + tY )− Tr (X󰂑tY )

and

Φ2(X, Y ) = Tr((1− t)X + tY )− Tr (Ft(X, Y ))

are divergences and simultaneously solve related problems.

• Quantity Ft(X, Y ) is new; therefore, we need to establish new properties for this quantity

while also comparing it with the previously known means.
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Math. Informatics., 39, 751-760.

[47] Hwang J., Kim S. (2018), “Bounds for the Wasserstein mean with applications to the Lie-

Trotter mean”, J. Math. Anal. Appl., 475, 1744-1753.

[48] Hwang J., Kim K. (2017), “Lie-Trotter means of positive definite operators”, Linear Alge-

bra Appl., 531, 268-280.

[49] Jeong M., Hwang J., Kim K. (2023), “Right mean for the α-z-Bures Wasserstein quantum

divergence”, Act. Math, Sci, 43, 2320-2332.

[50] Huang H., Wu Z., Zhu C., Fei S. (2021), “Quantifying the quantumness of ensembles via
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